Effects of metabolic and pharmacologic interventions on myocardial infarct size following coronary occlusion. 1976

P R Maroko, and E Braunwald

A number of hemodynamic, pharmacologic, and metabolic interventions were found to change the extent of acute ischemic injury of the myocardium and subsequent necrosis following experimental coronary artery occlusion. Reduction in myocardial damage occurred by decreasing myocardial oxygen demands (beta-adrenergic blocking agents, intra-aortic balloon counterpulsation, nitroglycerin, decreasing afterload in hypertensive patients, inhibition of lipolysis, and digitalis in the failing heart); by increasing myocardial oxygen supply either directly (coronary artery reperfusion or elevating arterial pO2), or through collateral vessels (evevation of coronary perfusion pressure by alpha adrenergic agonists, intra-aortic balloon counterpulsation); or by increasing plasma osmolality (manitol, hypertonic glucose); presumably by augmenting anaerobi metabolism (glucose-insulin-potassium, hypertonic glucoxe insulin potassium, hypertonic glucose); by enhancing transport to the ischemic zone of substrates utilized in energy production (hyaluronidase); by protecting against autolytic and heterolytic damage (hydrocortisone, cobra venom factor, aprotinin). Augmentation of myocardial ischemic damage occurred as a consequence of increasing myocardial oxygen requirements (isoproterenol, glucagon, ouabain, bretylium tosylate, tachycardia); by decreasing myocardial oxygen supply either directly (hypoxia, anemia), through reduction of collateral flow (hemorrhagic hypotension, minoxidil), or by decreasing substrate availability (hypoglycemia). Pilot studies have been carried out in patients with hyaluronidase, nitroglycerin intra-aortic balloon counterpulsation, beta-blocking agents and Arfonad and have shown that these interventions may also reduce myocardial damage, which suggests that the concept of reduction in infarct size following coronary occlusion is applicable clinically.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

P R Maroko, and E Braunwald
July 1975, Cardiovascular research,
P R Maroko, and E Braunwald
January 1982, Journal of cardiovascular pharmacology,
P R Maroko, and E Braunwald
February 2003, Journal of the American College of Cardiology,
P R Maroko, and E Braunwald
June 2010, Journal of the American College of Cardiology,
P R Maroko, and E Braunwald
January 1974, Journal of the Oslo city hospitals,
P R Maroko, and E Braunwald
July 1980, The American journal of cardiology,
P R Maroko, and E Braunwald
January 1980, Advances in prostaglandin and thromboxane research,
P R Maroko, and E Braunwald
October 1984, Journal of the American College of Cardiology,
Copied contents to your clipboard!