Manganese and copper promote the binding of dopamine to "serotonin binding proteins" in bovine frontal cortex. 1995

C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
Department of Protein Chemistry, Free University Brussels, St Genesius-Rode, Belgium.

The authors previously reported that Fe2+ is capable of increasing the binding of dopamine and of serotonin to "serotonin binding proteins" which are present in soluble extracts from calf brain. In this study, it is shown that Mn2+ and Cu2+ are also capable of increasing the binding, but for dopamine only. As for Fe2+, Mn2+ and Cu2+ are likely to promote the binding by virtue of their ability to enhance the oxidation of dopamine into dopamine-O-quinone, a derivative which is known to undergo covalent association with sulfhydryl groups of proteins. Data such as the irreversible nature of the majority of the binding, the inhibitory action of reducing agents (sodium ascorbate) and of reagents which contain, or modify sulfhydryl groups (reduced glutathione) are compatible with such a mechanism. The three metal ions are also capable of inactivating part of the binding sites on SBP directly; this effect is more pronounced for Cu2+ than for Fe2+ and it is only weak for Mn2+. The Fe(2+)-mediated binding of dopamine is inhibited by the superoxide dismutase enzyme, and it was therefore suggested that Fe2+ enhances the oxidation of dopamine by virtue of its ability to produce superoxide radicals out of dissolved molecular oxygen. Such a mechanism does not appear to take place in the case of Mn2+ and Cu2+. Instead, it is likely that Cu2+ and dopamine form a complex which is highly susceptible towards oxidation by dissolved molecular oxygen. Mn2+, on the other hand, can easily be oxidized into Mn3+, which is capable to oxidize dopamine by itself.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
March 1992, European journal of pharmacology,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
February 1993, Neurochemistry international,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
January 1986, Neurochemistry international,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
November 1988, Journal of neurochemistry,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
January 1983, Lancet (London, England),
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
January 1985, Neurochemistry international,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
July 2019, Journal of neurochemistry,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
September 1984, Journal of neurochemistry,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
January 1987, Brain research,
C Velez-Pardo, and M Jimenez del Rio, and G Ebinger, and G Vauquelin
August 1988, Biochemical pharmacology,
Copied contents to your clipboard!