The role of alpha 2-adrenoceptors of the medullary lateral reticular nucleus in spinal antinociception in rats. 1995

H Mansikka, and A Pertovaara
Department of Physiology, University of Helsinki, Finland.

We attempted to find out the role of alpha 2-adrenoceptors of the medullary lateral reticular nucleus (LRN) in antinociception in rats. Spinal antinociception was evaluated using the tail-flick test, and supraspinal antinociception using the hotplate test. Antinociceptive effects were determined following local electric stimulation of the LRN, and following microinjections of medetomidine (an alpha 2-adrenoceptor agonist; 1-10 micrograms), atipamezole (an alpha 2-adrenoceptor antagonist; 20 micrograms) or lidocaine (4%) into the LRN. The experiments were performed using intact and spinalized Hannover-Wistar rats with a unilateral chronic guide cannula. Electric stimulation of the LRN as well as of the periaqueductal gray produced a significant spinal antinociceptive effect in intact rats. Medetomidine (1-10 micrograms), when microinjected into the LRN, produced no significant antinociceptive effect in the tail-flick test in intact rats. However, following spinalization, medetomidine in the LRN (10 micrograms) produced a significant atipamezole-reversible antinociceptive effect in the tail-flick test. In the hot-plate test, medetomidine (10 micrograms) in the LRN produced a significant atipamezole-reversible increase of the paw-lick latency in intact rats. Microinjection of atipamezole (20 micrograms) or lidocaine alone into the LRN produced no significant effects in the tail-flick test. The results are in line with the previous evidence indicating that the LRN and the adjacent ventrolateral medulla is involved in descending inhibition of spinal nocifensive responses. However, alpha 2-adrenoceptors in the LRN do not mediate spinal antinociception but, on the contrary, their activation counteracts antinociception at the spinal cord level.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

H Mansikka, and A Pertovaara
September 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Mansikka, and A Pertovaara
June 1983, Experimental neurology,
H Mansikka, and A Pertovaara
November 1975, Brain research,
H Mansikka, and A Pertovaara
November 1996, The Journal of urology,
H Mansikka, and A Pertovaara
December 1982, Anatomy and embryology,
H Mansikka, and A Pertovaara
October 2007, The Journal of comparative neurology,
Copied contents to your clipboard!