Pravastatin modulates cholesteryl ester transfer from HDL to apoB-containing lipoproteins and lipoprotein subspecies profile in familial hypercholesterolemia. 1995

M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
Institut National de la Santé et de la Recherche Médical Unité 321, Hôpital de la Pitié, Paris, France.

Familial hypercholesterolemia (FH) results from genetic defects in the LDL receptor, and is characterized by a marked elevation in plasma LDL and by qualitative abnormalities in LDL particles. Because LDL particles are major acceptors of cholesteryl esters (CEs) from HDL, significant changes occur in the flux of CE through the reverse cholesterol pathway. To evaluate the effects of an HMG-CoA reductase inhibitor, pravastatin, on CE transfer from HDL to apo B-containing lipoproteins and on plasma lipoprotein subspecies profile in subjects with heterozygous FH, we investigated the transfer of HDL-CE to LDL subfractions and changes in both concentration and chemical composition of the apo B- and the apo AI-containing lipoproteins. After pravastatin treatment (40 mg/d) for a 12-week period, plasma LDL concentrations (mean +/- SD, 745.4 +/- 51.9 mg/dL) were reduced by 36% in patients with FH (n = 6). By contrast, the qualitative features of the density profile of LDL subspecies in patients with FH, in whom the intermediate (d = 1.029 to 1.039 g/mL) and dense (d = 1.039 to 1.063 g/mL) subspecies were significantly increased relative to a control group, were not modified by pravastatin. In addition, no significant effect on the chemical composition of individual LDL subfractions was observed. Furthermore, plasma HDL concentrations were not modified, although the density distribution of HDL was normalized. Indeed, the HDL density peak was shifted towards the HDL2 subfraction (ratios of HDL2 to HDL3 were 0.7 and 1.1 before and after treatment, respectively). Evaluation of plasma CE transfer protein (CETP) mass was performed with an exogenous CE transfer assay. Under these conditions, no modification of plasma CETP protein mass was induced by pravastatin administration. However, the rate of CE transfer from HDL to LDL was reduced by 24% by pravastatin (61 +/- 17 micrograms CE.h-1.mL-1 plasma; P < .0005), although intermediate and dense LDL subfractions again accounted for the majority (71%) of the total CE transferred to LDL. Thus, pravastatin induced reduction of plasma CETP activity without change in the preferential targeting of the transfer of HDL-CE towards the denser LDL subfractions. In conclusion, pravastatin reduces the elevated flux of CE from HDL to apo B-containing lipoproteins in subjects with heterozygous FH as a result of a reduction in the LDL particle acceptor concentration.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D005260 Female Females
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic

Related Publications

M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
July 2007, Journal of lipid research,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
September 1987, Journal of lipid research,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
June 1998, Internal medicine (Tokyo, Japan),
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
June 1992, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
January 1982, Journal of lipid research,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
June 2001, Metabolism: clinical and experimental,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
December 1999, Journal of lipid research,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
August 1984, The Journal of biological chemistry,
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
June 1998, Internal medicine (Tokyo, Japan),
M Guérin, and P J Dolphin, and C Talussot, and J Gardette, and F Berthézène, and M J Chapman
June 2004, Journal of lipid research,
Copied contents to your clipboard!