Mitochondrial single-stranded DNA-binding protein from Drosophila embryos. Physical and biochemical characterization. 1995

P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
Marie Curie Research Institute, Oxted, Surrey, United Kingdom.

Using a stringent purification procedure on single-stranded DNA cellulose, we have isolated the mitochondrial single-stranded DNA-binding protein from Drosophila melanogaster embryos. Its identity is demonstrated by amino-terminal sequencing of the homogeneous protein and by its localization to a mitochondrial protein fraction. The mitochondrial protein is immunologically and biochemically distinct from the previously characterized nuclear replication protein A from Drosophila (Mitsis, P. G., Kowalczykowski, S. C., and Lehman, I. R. (1993) Biochemistry 32, 5257-5266; Marton, R. F., Thömmes, P., and Cotterill, S. (1994) FEBS Lett. 342, 139-144). It consists of a single polypeptide of 18 kDa, which is responsible for the DNA binding activity. Sedimentation analysis suggests that D. melanogaster mitochondrial single-stranded DNA-binding protein exists as a homo-oligomer, possibly a tetramer, in solution. The protein binds to DNA in its single-stranded form with a strong preference over double-stranded DNA or RNA, and binds to polypyrimidines preferentially over polypurines. Drosophila mitochondrial single-stranded DNA-binding protein exhibits a greater affinity for long oligonucleotides as compared to short ones, yet does not show high cooperativity. Its binding site size, determined by competition studies and by fluorescence quenching, is approximately 17 nucleotides under low salt conditions, and increases in the presence of greater than 150 mM NaCl. The homogeneous protein stimulates the activity of mitochondrial DNA polymerase from D. melanogaster embryos, increasing dramatically the rate of initiation of DNA synthesis on a singly primed DNA template.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot

Related Publications

P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
August 2006, DNA sequence : the journal of DNA sequencing and mapping,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
January 1995, The Journal of biological chemistry,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
March 1985, Nucleic acids research,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
April 2001, Molecular biology of the cell,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
September 2022, International journal of biological macromolecules,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
May 2007, Protein expression and purification,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
July 1997, European journal of biochemistry,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
May 2000, The Journal of biological chemistry,
P Thömmes, and C L Farr, and R F Marton, and L S Kaguni, and S Cotterill
September 1999, European journal of biochemistry,
Copied contents to your clipboard!