Utilization of D-asparagine by Saccharomyces cerevisiae. 1976

P C Dunlop, and R J Roon, and H L Even

Yeast strains sigma1278b and Harden and Young, which synthesize only an internal constitutive form of L-asparaginase, do not grow on D-asparagine, as a sole source of nitrogen, and whole cell suspensions of these strains do not hydrolyze D-asparagine. Strains X2180-A2 and D273-10B, which possess an externally active form of asparaginase, are able to grow slowly on D-asparagine, and nitrogen-starved suspensions of these strains exhibit high activity toward the D-isomer. Nitrogen starvation of strain X218O-A2 results in coordinate increase of D- and L-asparaginase activity; the specific activity observed for the D-isomer is approximately 20% greater than that observed for the L-isomer. It was observed, in studies with cell extracts, that hydrolysis of D-asparagine occurred only with extracts from nitrogen-starved cells of strains that synthesize the external form of asparaginase. Furthermore, the activity of the extracts toward the D-isomer was always higher than that observed with the L-isomer. A 400-fold purified preparation of external asparaginase from Saccharomyces cerevisiae X218U-A2 hydrolyzed D-asparagine with an apparent Km of 0.23 mM and a Vmax of 38.7 mumol/min per mg of protein. D-Asparagine was a competitive inhibitor of L-asparagine hydrolysis and the Ki determined for this inhibition was approximately equal to its Km. These data suggest that D-asparagine is a good substrate for the external yeast asparaginase but is a poor substrate for the internal enzyme.

UI MeSH Term Description Entries
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001215 Asparaginase A hydrolase enzyme that converts L-asparagine and water to L-aspartate and NH3. EC 3.5.1.1. Asparaginase II,Asparaginase medac,Asparagine Deaminase,Colaspase,Crasnitin,Elspar,Erwinase,Kidrolase,Leunase,Paronal,Deaminase, Asparagine,medac, Asparaginase
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

P C Dunlop, and R J Roon, and H L Even
November 1989, Journal of general microbiology,
P C Dunlop, and R J Roon, and H L Even
July 1980, European journal of biochemistry,
P C Dunlop, and R J Roon, and H L Even
October 2018, PLoS genetics,
P C Dunlop, and R J Roon, and H L Even
February 2006, Biochimica et biophysica acta,
P C Dunlop, and R J Roon, and H L Even
March 1979, European journal of biochemistry,
P C Dunlop, and R J Roon, and H L Even
December 1992, Trends in biochemical sciences,
P C Dunlop, and R J Roon, and H L Even
August 1990, Protein engineering,
P C Dunlop, and R J Roon, and H L Even
June 1923, Science (New York, N.Y.),
P C Dunlop, and R J Roon, and H L Even
April 2006, Microbial cell factories,
P C Dunlop, and R J Roon, and H L Even
December 2006, The Journal of biological chemistry,
Copied contents to your clipboard!