Expression of a constitutively active erythropoietin receptor in primary hematopoietic progenitors abrogates erythropoietin dependence and enhances erythroid colony-forming unit, erythroid burst-forming unit, and granulocyte/macrophage progenitor growth. 1993

P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
Medical University of South Carolina, Charleston.

We tested the ability of a constitutively activated erythropoietin receptor [EpoR(R129C)] to alter the growth requirements of primary hematopoietic precursors that terminally differentiate in culture. Two recombinant retroviruses expressing EpoR(R129C), spleen focus-forming virus (SFFVc-EpoR) and myeloproliferative sarcoma virus (MPSVcEpoR), were used to infect fetal liver cells that served as a source of hematopoietic progenitors. Methylcellulose cultures were incubated in the absence of any added growth factors or in combination with selected growth factors. EpoR(R129C) completely abrogated the Epo requirement of erythroid colony-forming units to form erythrocytes after 2-5 days in culture and did not interfere with the differentiation program of these cells. In the absence of added growth factors EpoR(R129C) did not enhance erythroid burst-forming unit development. In contrast to experiments in heterologous cell lines, EpoR(R129C) did not render progenitor cells independent of interleukin 3 or granulocyte/macrophage colony-stimulating factor (GM-CSF). However, when progenitors were cultured with added steel factor, but not with interleukin 3 or GM-CSF, EpoR(R129C) augmented the growth and differentiation of erythroid bursts, mixed erythroid/myeloid, and granulocyte/macrophage (GM) colonies. Furthermore, both viruses were capable of expressing EpoR(R129C) in erythroid, mixed erythroid/myeloid, and GM colonies. Thus an aberrantly expressed and constitutively activated EpoR can stimulate proliferation of some GM progenitors. The ability of EpoR(R129C) to abrogate the Epo requirement of primary hematopoietic cells, but not the requirement for other cytokines, is consistent with the induction of erythroblastosis in vivo.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004921 Erythropoietin Glycoprotein hormone, secreted chiefly by the KIDNEY in the adult and the LIVER in the FETUS, that acts on erythroid stem cells of the BONE MARROW to stimulate proliferation and differentiation.
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte

Related Publications

P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
February 1999, Experimental hematology,
P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
November 2022, Journal of visualized experiments : JoVE,
P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
August 2001, Annals of surgery,
P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
September 2001, Journal of leukocyte biology,
P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
February 2002, Blood,
P N Pharr, and D Hankins, and A Hofbauer, and H F Lodish, and G D Longmore
July 1985, Blut,
Copied contents to your clipboard!