PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. 1993

P D Siebert, and J W Larrick
CLONTECH Laboratories, Palo Alto, CA 94303-4607.

A rapid and reliable method is described for preparing competitive DNA fragments for quantitative PCR. Synthetic DNAs complementary to previously established PCR primers are ligated together with the primers to both ends of a generic DNA fragment whose length differs from the natural target gene PCR product. After a short ligation step, the properly constructed ligation products (i.e., those that have the correct primer templates on opposite sides of the generic DNA fragment) are preferentially amplified by PCR. The generation of competitive PCR fragments, MIMICS, can be completed in a single day. To perform quantitative PCR, known quantities of PCR MIMICS are spiked into PCR amplification reactions containing the experimental cDNA samples. A visual or radioactive comparison of the PCR products can then be used to determine the initial quantity of target gene. We show that competitive PCR MIMICS can be used to accurately measure small changes in mRNA levels.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015245 Deoxyribonuclease BamHI One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/GATCC at the slash. BamHI is from Bacillus amyloliquefaciens N. Numerous isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme BamHI,Deoxyribonuclease BstI,Endonuclease BamHI,AacI Endonuclease,AaeI Endonuclease,AccEBI Endonuclease,AliI Endonuclease,ApaCI Endonuclease,BamFI Endonuclease,BamHI Deoxyribonuclease,BamHI Endonuclease,BamI Endonuclease,BamKI Endonuclease,BamNI Endonuclease,BnaI Endonuclease,BstI Deoxyribonuclease,BstI Endonuclease,DdsI Endonuclease,Endonuclease AacI,Endonuclease AaeI,Endonuclease AccEBI,Endonuclease Ali12257I,Endonuclease Ali12258I,Endonuclease AliI,Endonuclease BamFI,Endonuclease BamKI,Endonuclease BamNI,Endonuclease BnaI,Endonuclease Bst1503,Endonuclease BstI,Endonuclease DdsI,Endonuclease GdoI,Endonuclease GinI,Endonuclease GoxI,Endonuclease MleI,Endonuclease NasBI,Endonuclease NspSAIV,Endonuclease RhsI,Endonuclease SolI,GdoI Endonuclease,GinI Endonuclease,GoxI Endonuclease,MleI Endonuclease,NasBI Endonuclease,NspSAIV Endonuclease,RhsI Endonuclease,SolI Endonuclease,Endonuclease, ApaCI,Endonuclease, SolI,SolI, Endonuclease
D015246 Deoxyribonuclease EcoRI One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/AATTC at the slash. EcoRI is from E coliRY13. Several isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme EcoRI,Deoxyribonuclease SsoI,Endonuclease EcoRI,Eco RI,Eco-RI,EcoRI Endonuclease,Endodeoxyribonuclease ECoRI,Endodeoxyribonuclease HsaI,Endonuclease Eco159I,Endonuclease Eco82I,Endonuclease RsrI,Endonuclease SsoI,HsaI Endonuclease,Restriction Endonuclease RsrI

Related Publications

P D Siebert, and J W Larrick
February 1994, PCR methods and applications,
P D Siebert, and J W Larrick
September 1995, BioTechniques,
P D Siebert, and J W Larrick
June 1996, Molecular and cellular probes,
P D Siebert, and J W Larrick
September 1996, BioTechniques,
P D Siebert, and J W Larrick
January 1994, BioTechniques,
P D Siebert, and J W Larrick
September 2000, BioTechniques,
P D Siebert, and J W Larrick
November 1991, PCR methods and applications,
P D Siebert, and J W Larrick
July 1997, BioTechniques,
Copied contents to your clipboard!