Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic Mycoplasma-like organisms. 1993

H Neimark, and B C Kirkpatrick
Department of Microbiology and Immunology, Morse Institute for Molecular Biology, State University of New York, Brooklyn 11203.

We describe the isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic, mycoplasma-like organisms (MLOs). MLO chromosomes are circular and their sizes (640 to 1185 kbp) are heterogeneous. Divergence in the range of chromosome sizes is apparent between MLOs in the two major MLO disease groups, and chromosome size polymorphism occurs among some related agents. MLO chromosome sizes overlap those of culturable mycoplasmas; consequently, small genome size alone cannot explain MLO non-culturability. Hybridization with cloned MLO-specific chromosomal and 16S rRNA probes detected two separate chromosomes in some MLO 'type' strains. Large DNA molecules that appear to be MLO megaplasmids were also demonstrated. The ability to characterize full-length chromosomes from virtually any non-culturable prokaryote should greatly facilitate the molecular and genetic analysis of these difficult bacteria.

UI MeSH Term Description Entries
D008973 Tenericutes A phylum of gram-negative bacteria consisting of cells bounded by a plasma membrane. Its organisms differ from other bacteria in that they are devoid of cell walls. This phylum was formerly the class Mollicutes. Mollicutes is now the sole class in the phylum Tenericutes. Mollicutes
D010935 Plant Diseases Diseases of plants. Disease, Plant,Diseases, Plant,Plant Disease
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D016521 Electrophoresis, Gel, Pulsed-Field Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length. Electrophoresis, Gel, Pulsed-Field Gradient,Gel Electrophoresis, Pulsed-Field,Contour-Clamped Homogeneous-Field Gel Electrophoresis,Electrophoresis, Gel, Pulsed Field,Electrophoresis, Pulsed Field Gel,Field Inversion Gel Electrophoresis,Orthogonal Field Alternation Gel Electrophoresis,Orthogonal-Field Alternation-Gel Electrophoresis,Pulsed Field Gradient Gel Electrophoresis,Pulsed-Field Gel Electrophoresis,Pulsed-Field Gradient Gel Electrophoresis,Alternation-Gel Electrophoresis, Orthogonal-Field,Contour Clamped Homogeneous Field Gel Electrophoresis,Electrophoresis, Orthogonal-Field Alternation-Gel,Electrophoresis, Pulsed-Field Gel,Gel Electrophoresis, Pulsed Field,Pulsed Field Gel Electrophoresis

Related Publications

H Neimark, and B C Kirkpatrick
January 1977, Nucleic acids research,
H Neimark, and B C Kirkpatrick
July 1990, Lancet (London, England),
H Neimark, and B C Kirkpatrick
January 2013, Methods in molecular biology (Clifton, N.J.),
H Neimark, and B C Kirkpatrick
October 1987, Science (New York, N.Y.),
H Neimark, and B C Kirkpatrick
September 1990, Nucleic acids research,
H Neimark, and B C Kirkpatrick
March 2003, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
H Neimark, and B C Kirkpatrick
January 1984, Annales de microbiologie,
H Neimark, and B C Kirkpatrick
December 1966, American journal of ophthalmology,
H Neimark, and B C Kirkpatrick
June 1962, Journal of bacteriology,
Copied contents to your clipboard!