Identification of critical contact residues in the NC41 epitope of a subtype N9 influenza virus neuraminidase. 1993

J M Nuss, and P B Whitaker, and G M Air
Department of Microbiology, University of Alabama, Birmingham 35294.

We have examined amino acids on influenza virus neuraminidase (NA) subtype N9 (A/tern/Australia/G70c/75) which are in contact with monoclonal antibody NC41 to analyze individual interactions important for antibody recognition. The crystal structure of NA complexed with NC41 Fab1 shows antibody contacts at 19 amino acid residues on the NA surface which are localized on five polypeptide loops surrounding the enzyme active site. Fifteen mutant NA genes were constructed to encode a protein which contained a single amino acid substitution and these were tested for effects of the replacement on NC41 binding. Our data revealed that NAs with changes at 368, 400, and 434 completely lost NC41 recognition. NAs with side chains replaced at residues 346 and 373 exhibited binding reduced to less than 50% of wild-type binding. Changes in seven other contacting residues, including substituted side chains which differed considerably from wild-type NA in size and charge, had no significant effect on NC41 binding. These results indicate that only a few of the many residues which make up an epitope are crucial for interaction and provide the critical contacts required for antibody recognition. This implies that antibody escape mutants are selected only if they contain changes at these crucial sites, or changes which introduce bulky side chains that sterically prevent antibody attachment.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

J M Nuss, and P B Whitaker, and G M Air
September 1992, Journal of molecular biology,
J M Nuss, and P B Whitaker, and G M Air
June 1993, Journal of protein chemistry,
J M Nuss, and P B Whitaker, and G M Air
September 1991, Journal of molecular biology,
J M Nuss, and P B Whitaker, and G M Air
December 1990, Journal of virology,
J M Nuss, and P B Whitaker, and G M Air
January 1987, Proteins,
J M Nuss, and P B Whitaker, and G M Air
January 2014, Methods in molecular biology (Clifton, N.J.),
J M Nuss, and P B Whitaker, and G M Air
January 2008, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!