Growth of normal human ovarian surface epithelial cells in reduced-serum and serum-free media. 1993

W M Elliott, and N Auersperg
Department of Anatomy, University of British Columbia, Vancouver, Canada.

The human ovarian surface epithelium (OSE) is believed responsible for over 85% of ovarian cancers, yet little is known about the normal biology of these cells. To date, culture of OSE has only been reported in media with high serum supplements. We have developed two media, one with less than 1% of serum (OSEM-1) and the other comprised of highly purified and defined materials (OSEM-2), which allow us to study OSE under relatively defined conditions. By substituting 0.05% of Pedersen's fetuin for 15% fetal bovine serum (FBS) with Medium 199/MCDB105 basal medium, the cell numbers reached 50 to 60% of those in the presence of 15% FBS over 7 days. However, over several weeks, the total number of population doublings achieved were comparable to those in 15% FBS. Addition of insulin, transferrin, ethanolamine, lipoic acid, and phosphatidylcholine to the medium with Pedersen's fetuin (OSEM-1) enhanced growth up to 20% more than in their absence. Supplementation of M199/105 with highly purified (> 99%) fetuin, alpha 2-macroglobulin, and hydrocortisone resulted in a defined medium (OSEM-2) that permitted 1 to 2 doublings/7 days. In addition, cells maintained a more normal, epithelial-like morphology in culture for a longer period in the presence of Pedersen's or purified fetuin than in M199/105/15% FBS, thus increasing the number of morphologically normal cells available for experimentation. Addition of 0.05% Pedersen's fetuin to M199/105 in the presence of 6 to 8% FBS resulted in levels of growth equivalent to those in M199/105/15% FBS alone. We are now able to study the effects of various compounds on the growth and differentiation of OSE under defined conditions, and have reduced the requirement for FBS to produce large numbers of OSE cells.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

W M Elliott, and N Auersperg
February 1982, Experimental cell research,
W M Elliott, and N Auersperg
August 1988, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W M Elliott, and N Auersperg
July 1991, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W M Elliott, and N Auersperg
February 1986, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
W M Elliott, and N Auersperg
October 1989, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
W M Elliott, and N Auersperg
October 1986, Experimental eye research,
W M Elliott, and N Auersperg
September 1993, Differentiation; research in biological diversity,
W M Elliott, and N Auersperg
February 1987, Journal of cellular physiology,
Copied contents to your clipboard!