Age-related studies on the removal of 7-methylguanine from DNA of mouse kidney tissue following N-methyl-N-nitrosourea treatment. 1993

J W Gaubatz, and B H Tan
Department of Biochemistry, University of South Alabama College of Medicine, Mobile 36688.

To investigate the effects of age on DNA repair of alkylation damage, C57BL/6NNia mice ranging from 9 months to 29 months of age were injected by the intraperitoneal route with single doses of N-methyl-N-nitrosourea (MNU). The rates of removal of 7-methylguanine (m7Gua) in nuclear DNA from kidney were determined at various intervals from 1 to 288 h after injection of either 25 mg or 50 mg MNU per kg body weight. Reversed phase HPLC with electrochemical detection was used to monitor adduct disappearance from DNA hydrolysates. The kinetics of m7Gua removal from DNA were at least biphasic. Evidence was obtained that there was a rapid removal of m7Gua occurring in the first 24 h after MNU administration, followed by a slow phase of removal with a t1/2 greater than 150 h. We assume that these two phases of m7Gua removal correspond to active repair of DNA by N-alkylglycosylases and to passive elimination via spontaneous hydrolysis, respectively. Young and old kidney tissues all exhibited significant repair of m7Gua (55-73% of the induced adducts were removed in the first 24 h), but a substantial fraction of m7Gua was removed slowly, indicating that there are methylated bases which were refractory to repair processes. At both doses of MNU studied, old tissues showed active repair of m7Gua that, within the limits of detection, had similar initial rates of removal as young tissues. However, old kidney did not remove this adduct with the same overall efficiency as young kidney. Therefore, the amount of m7Gua in the repair-resistant fraction was greater in the senescent tissues. The biochemical mechanisms responsible for the less efficient DNA repair in senescent kidney are not known, but we suggest that such differences are due in part to structural alterations in the chromatin.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008770 Methylnitrosourea A nitrosourea compound with alkylating, carcinogenic, and mutagenic properties. Nitrosomethylurea,N-Methyl-N-nitrosourea,NSC-23909,N Methyl N nitrosourea,NSC 23909,NSC23909
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006147 Guanine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell

Related Publications

J W Gaubatz, and B H Tan
December 1974, Journal of the National Cancer Institute,
J W Gaubatz, and B H Tan
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
J W Gaubatz, and B H Tan
September 1978, Chemico-biological interactions,
J W Gaubatz, and B H Tan
August 1994, International journal of cancer,
Copied contents to your clipboard!