Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. 1993

G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
Rockefeller University, New York, New York 10021.

The crystal structure of the Src SH2 domain complexed with a high affinity 11-residue phosphopeptide has been determined at 2.7 A resolution by X-ray diffraction. The peptide binds in an extended conformation and makes primary interactions with the SH2 domain at six central residues: PQ(pY)EEI. The phosphotyrosine and the isoleucine are tightly bound by two well-defined pockets on the protein surface, resulting in a complex that resembles a two-pronged plug engaging a two-holed socket. The glutamate residues are in solvent-exposed environments in the vicinity of basic side chains of the SH2 domain, and the two N-terminal residues cap the phosphotyrosine-binding site. The crystal structure of Src SH2 in the absence of peptide has been determined at 2.5 A resolution, and comparison with the structure of the high affinity complex reveals only localized and relatively small changes.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D016392 Proto-Oncogene Proteins pp60(c-src) Membrane-associated tyrosine-specific kinases encoded by the c-src genes. They have an important role in cellular growth control. Truncation of carboxy-terminal residues in pp60(c-src) leads to PP60(V-SRC) which has the ability to transform cells. This kinase pp60 c-src should not be confused with csk, also known as c-src kinase. c-src Protein pp60,pp60(c-src),src Proto-Oncogene Protein pp60,Phosphoprotein pp60(c-src),Proto-Oncogene Protein pp60(c-src),Proto-Oncogene Protein src,pp60 c-src,src Proto-Oncogene Product,Protein pp60, c-src,Protein src, Proto-Oncogene,Proto Oncogene Protein src,Proto-Oncogene Product, src,c src Protein pp60,c-src, pp60,pp60 c src,pp60, c-src Protein,src Proto Oncogene Product,src Proto Oncogene Protein pp60

Related Publications

G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
March 2003, Protein engineering,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
October 2005, Journal of molecular biology,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
February 1995, Journal of molecular biology,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
March 1993, Nature,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
February 2002, Journal of molecular biology,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
May 2014, Journal of theoretical & computational chemistry,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
November 2008, Journal of biomolecular NMR,
G Waksman, and S E Shoelson, and N Pant, and D Cowburn, and J Kuriyan
October 2002, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!