Polymerase chain reaction using 16S rRNA gene sequences distinguishes the two biovars of Ureaplasma urealyticum. 1993

J A Robertson, and A Vekris, and C Bebear, and G W Stemke
Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada.

Several fundamental phenotypic and genotypic differences have separated strains of the genital mycoplasma Ureaplasma urealyticum into two clusters or biovars. However, the lack of an easily performed and unambiguous test to discriminate between them has hampered investigation of the relationship between these biovars and disease. We determined the 16S rRNA nucleotide sequence of U. urealyticum 27, the serovar 3 standard and representative of the parvo biovar (serovars 1, 3, 6, and 14). This sequence was compared with the published sequence of U. urealyticum T960, which is the type strain and the serovar 8 standard and is representative of the T960 biovar which is composed of the 10 intervening serovars. Homology between the two sequences was 98.8%; differences were exploited to provide primers for biovar-specific polymerase chain reactions (PCRs). The results of these reactions placed all 14 serovar standard strains into the correct biovar. The PCRs were also applied to 10 cloned and 8 noncloned isolates that had been serotyped earlier. For 16 of them, we deduced their biovars from the serotyping data and then confirmed them by PCR. One unpredictable isolate and one nonserotypeable isolate were also classified as to biovar. Thus, we have developed a method for biotyping U. urealyticum that is applicable to both laboratory-adapted strains and wild-type isolates and that is appropriate for testing large numbers of clinical isolates. The amplification by the T960 biovar PCR protocol of DNAs from ureaplasmas of animals and certain Mycoplasma species suggested that the parvo biovar has diverged from the mainstream of the evolution of this clade.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D015373 Bacterial Typing Techniques Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping. Bacteriocin Typing,Biotyping, Bacterial,Typing, Bacterial,Bacterial Biotyping,Bacterial Typing,Bacterial Typing Technic,Bacterial Typing Technics,Bacterial Typing Technique,Technic, Bacterial Typing,Technics, Bacterial Typing,Technique, Bacterial Typing,Techniques, Bacterial Typing,Typing Technic, Bacterial,Typing Technics, Bacterial,Typing Technique, Bacterial,Typing Techniques, Bacterial,Typing, Bacteriocin
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016990 Ureaplasma urealyticum A species of gram-negative bacteria found in the human genitourinary tract (UROGENITAL SYSTEM), oropharynx, and anal canal. Serovars 1, 3, 6, and 14 have been reclassed into a separate species UREAPLASMA parvum. Ureaplasma urealyticum biovar 2

Related Publications

J A Robertson, and A Vekris, and C Bebear, and G W Stemke
December 1999, Journal of clinical microbiology,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
December 1992, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
October 2017, Tropical doctor,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
March 1993, Applied and environmental microbiology,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
July 2008, Microbiology and immunology,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
June 1994, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
November 2010, Journal of clinical microbiology,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
January 2000, The Journal of urology,
J A Robertson, and A Vekris, and C Bebear, and G W Stemke
December 1995, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!