Extracellular access to the Na,K pump: pathway similar to ion channel. 1993

D C Gadsby, and R F Rakowski, and P De Weer
Marine Biological Laboratory, Woods Hole, MA 02543.

In each normal Na,K pump cycle, first three sodium and then two potassium ions are transported; in both cases, the ions become temporarily occluded in pump conformations that isolate them from internal and external solutions. A major charge movement occurs during sodium translocation and accompanies the deocclusion of sodium ions or their release to the cell exterior, or both. The nature of the charge movement was examined by measurement of the undirectional sodium-22 efflux mediated by Nai-Nao exchange (Nai and Nao are internal and external sodium ions) in voltage-clamped, internally dialyzed squid giant axons in the absence of potassium; in this way the pump activity was restricted to the sodium-translocation pathway. Although electroneutral, the Nai-Nao exchange was nevertheless voltage-sensitive: increasingly negative potentials enhanced its rate along a saturating sigmoid curve. Such voltage dependence demonstrates that the release and rebinding of external sodium is the predominant charge-moving (hence, voltage-sensitive) step, suggesting that extracellular sodium ions must reach their binding sites deep in the pump molecule through a high-field access channel. This implies that part of the pump molecule is functionally analogous to an ion channel.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004073 Digitoxigenin 3 beta,14-Dihydroxy-5 beta-card-20(22)enolide. A cardenolide which is the aglycon of digitoxin. Synonyms: Cerberigenin; Echujetin; Evonogenin; Thevetigenin. Uzarigenin
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

D C Gadsby, and R F Rakowski, and P De Weer
November 2002, Annals of the New York Academy of Sciences,
D C Gadsby, and R F Rakowski, and P De Weer
April 2015, Biochemistry,
D C Gadsby, and R F Rakowski, and P De Weer
November 2008, Nature,
D C Gadsby, and R F Rakowski, and P De Weer
May 2018, FEBS open bio,
D C Gadsby, and R F Rakowski, and P De Weer
July 2018, Biophysical journal,
D C Gadsby, and R F Rakowski, and P De Weer
November 2009, Channels (Austin, Tex.),
D C Gadsby, and R F Rakowski, and P De Weer
August 2006, Proceedings of the National Academy of Sciences of the United States of America,
D C Gadsby, and R F Rakowski, and P De Weer
January 1982, The Tokai journal of experimental and clinical medicine,
D C Gadsby, and R F Rakowski, and P De Weer
May 1994, The Journal of general physiology,
Copied contents to your clipboard!