beta,beta'-Iminodipropionitrile-induced persistent dyskinetic syndrome in mice is transiently modified by MPTP. 1993

F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
Institute of Pharmacology, School of Medicine, University of Pisa, Italy.

Chronic administration of iminodipropionitrile (IDPN) is known to produce a persistent dyskinetic syndrome. Recent neurochemical reports seem to point out the dopaminergic system as having an important role in mediating IDPN syndrome. In order to identify a possible role for the nigrostriatal dopaminergic pathway in determining at least some aspects of the IDPN-induced dyskinetic syndrome, we used the neurotoxin, 1-methyl, 4-phenyl,1,2,3,6-tetrahydropyridine (MPTP), as a tool for investigating which aspects of the IDPN-related syndrome could be due to enhanced dopaminergic activity in the neostriatum. In mice made permanently dyskinetic with IDPN, MPTP administration produced dramatic and biphasic effects on all behavioral patterns characteristic of the dyskinetic syndrome. Six weeks after the syndrome occurred, IDPN failed to produce any change in striatal DA levels with respect to controls. By contrast, IDPN seems to reduce striatal levels of extraneuronal metabolites of DA. These data suggest that the activity of the nigrostriatal dopaminergic pathway does not play a leading role in the maintenance of IDPN-related syndrome. The transient modification of all behavioral parameters immediately after MPTP administration could be explained by acute effects of MPTP on other dopaminergic areas which are not permanently lesioned by this neurotoxin, or by the acute effects of MPTP on the release of other neurotransmitters.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004409 Dyskinesia, Drug-Induced Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199) Dyskinesia, Medication-Induced,Medication-Induced Dyskinesia,Drug-Induced Dyskinesia,Drug-Induced Dyskinesias,Dyskinesia, Drug Induced,Dyskinesia, Medication Induced,Dyskinesias, Drug-Induced,Dyskinesias, Medication-Induced,Medication Induced Dyskinesia,Medication-Induced Dyskinesias
D006719 Homovanillic Acid A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. 3-Methoxy-4-Hydroxyphenylacetic Acid,4-Hydroxy-3-Methoxyphenylacetic Acid,3 Methoxy 4 Hydroxyphenylacetic Acid,4 Hydroxy 3 Methoxyphenylacetic Acid,Acid, 3-Methoxy-4-Hydroxyphenylacetic,Acid, 4-Hydroxy-3-Methoxyphenylacetic,Acid, Homovanillic
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
January 1998, Neurotoxicology and teratology,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
February 1988, Pharmacology, biochemistry, and behavior,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
April 1987, Pharmacology, biochemistry, and behavior,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
January 1989, Neuroscience and biobehavioral reviews,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
March 1988, Experimental neurology,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
November 2021, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
January 1995, Brain research bulletin,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
April 1989, Pharmacology, biochemistry, and behavior,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
July 1999, Experimental neurology,
F Fornai, and M G Alessandri, and A Saginario, and F Vaglini, and G U Corsini
June 1987, Experimental neurology,
Copied contents to your clipboard!