Neuronal pp60c-src(+) in the developing chick spinal cord as revealed with anti-hexapeptide antibody. 1993

S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
Department of Anatomy, Yamanashi Medical College, Japan.

Polyclonal antibody was raised in rabbits against a synthetic hexapeptide R-K-V-D-V-R corresponding to a unique amino acid sequence of the neuron-specific c-src gene product pp60c-src(+). The antibody was purified by affinity chromatography. A single band with an apparent molecular mass of 60 kDa was recognized when the supernatant of homogenates of brain and spinal cord from chick embryos and chicks was probed with the affinity purified anti-hexapeptide antibody after SDS-polyacrylamide gel electrophoresis followed by Western blotting. Specificity of the antibody was further characterized by autophosphorylation assay of immunoprecipitate in comparison with the monoclonal antibody 327. Immunocytochemical studies by light microscopy revealed that pp60c-src(+) was localized in flake-like aggregates in neuronal cell bodies of the spinal cord in 7-15-day-incubated chick embryos and newly hatched chicks. Developing spinal ganglia and muscle cells were also immunoreactive at early developmental stages. By electron microscopy, the reaction product was observed mainly in two regions. One region was at polysomes and along the membranes of the rough endoplasmic reticulum. The other region was along the neuronal plasma membrane--at subsurface cisterns and at synapses. At synapses, the postsynaptic density, presynaptic membrane and synaptic vesicle membranes were immunostained. Immunoreactivity at synapses were more frequently observed at earlier stages than at later stages of development. These findings suggest that pp60c-src(+) is actively produced in developing neurons and has some important roles in synaptogenesis. In mature synapses, pp60c-src(+) may be involved in the interaction of synaptic vesicles with the presynaptic membrane.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick

Related Publications

S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
January 1985, Molecular and cellular biology,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
October 2014, Nucleic acids research,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
August 1972, Brain research,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
July 1984, Developmental biology,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
August 1981, Developmental biology,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
January 2008, Cellular and molecular life sciences : CMLS,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
August 1999, Brain research. Developmental brain research,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
September 1992, Journal of neurobiology,
S Atsumi, and K Wakabayashi, and K Titani, and Y Fujii, and T Kawate
December 1987, Development (Cambridge, England),
Copied contents to your clipboard!