Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. 1993

X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
Division of Molecular and Developmental Biology, Mount Sinai Hospital, Toronto, Canada.

The protein-tyrosine kinase activity of pp60c-src (c-Src) is inhibited by phosphorylation of tyr527, within the c-Src c-terminal tail. Genetic and biochemical data have suggested that this negative regulation requires an intact Src homology 2 (SH2) domain. Since SH2 domains recognize phosphotyrosine, it is possible that these two non-catalytic domains associate, and thereby repress c-Src kinase activity. Consistent with this model, an isolated Src SH2 domain expressed in bacteria as a GST fusion protein bound in vitro to a synthetic phosphotyrosine-containing peptide modeled on the C-terminal 13 residues of the c-Src tail. Binding was absolutely dependent on phosphorylation of tyr527 in the tail peptide, and was modified by both the length and sequence of the peptide. Competition experiments indicated only a moderate binding affinity between the Src SH2 domain and the phosphorylated tail. A distinct phosphotyrosine-containing peptide previously identified as binding the Src SH2 domain with high affinity stimulated c-Src tyrosine kinase activity in vitro, possibly by competing with the endogenous tail phosphorylation site for binding to the SH2 domain. Indeed, this activation was competitively inhibited by purified bacterial Src SH2 domain. These data provide direct evidence that the c-Src tail has an intrinsic affinity for the Src SH2 domain, and suggest that such an interaction in the intact molecule contributes to maintaining c-Src in an inactive form.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D016392 Proto-Oncogene Proteins pp60(c-src) Membrane-associated tyrosine-specific kinases encoded by the c-src genes. They have an important role in cellular growth control. Truncation of carboxy-terminal residues in pp60(c-src) leads to PP60(V-SRC) which has the ability to transform cells. This kinase pp60 c-src should not be confused with csk, also known as c-src kinase. c-src Protein pp60,pp60(c-src),src Proto-Oncogene Protein pp60,Phosphoprotein pp60(c-src),Proto-Oncogene Protein pp60(c-src),Proto-Oncogene Protein src,pp60 c-src,src Proto-Oncogene Product,Protein pp60, c-src,Protein src, Proto-Oncogene,Proto Oncogene Protein src,Proto-Oncogene Product, src,c src Protein pp60,c-src, pp60,pp60 c src,pp60, c-src Protein,src Proto Oncogene Product,src Proto Oncogene Protein pp60
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
May 1996, The Journal of biological chemistry,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
January 1994, Recent progress in hormone research,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
August 1996, Biochemistry,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
December 1994, The Journal of biological chemistry,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
November 2017, The Journal of biological chemistry,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
October 1996, The Journal of biological chemistry,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
September 1993, Molecular and cellular biology,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
August 2001, FEBS letters,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
February 2007, Journal of molecular biology,
X Liu, and S R Brodeur, and G Gish, and Z Songyang, and L C Cantley, and A P Laudano, and T Pawson
November 1999, Journal of molecular biology,
Copied contents to your clipboard!