Hypersensitivity of Cockayne's syndrome cells to camptothecin is associated with the generation of abnormally high levels of double strand breaks in nascent DNA. 1993

S Squires, and A J Ryan, and H L Strutt, and R T Johnson
Mammalian Cell DNA Repair Research Group, Department of Zoology, Cambridge, United Kingdom.

We report that fibroblasts from individuals with Cockayne's Syndrome (CS), an autosomal recessive disease exhibiting hypersensitivity to UV, are also hypersensitive to the killing action of camptothecin (CPT). In normal and CS cell lines the level of the protein-linked single strand DNA breaks (SSBs) induced by equal doses of CPT is similar, and these DNA breaks disappear within minutes of the removal of CPT. Thus, the toxicity of CPT does not correlate with the primary DNA lesions induced by the drug, and the hypersensitivity of CS cells cannot be explained by excessive topoisomerase I activity or by a defect in the enzyme ligation step. We have reported that CPT toxicity in normal cells is closely associated with the generation of double-strand DNA breaks (DSBs), predominantly at sites of DNA replication. The hypersensitivity of CS cells to CPT correlates closely with the much higher level of DSBs in nascent DNA than in normal cells. These DSBs are long-lived in all cells, but in CS many more (about 10-fold) remain 24 h after CPT removal and are presumably responsible for the higher frequency of chromosome aberrations in these cells. In CS as in normal cells aphidicolin prevents the generation of replication-related DSBs, suggesting that the movement of the DNA polymerase is necessary for the induction by CPT of the cytotoxic DSBs. Resistance to CPT and UV is restored to wild type in proliferating hybrids constructed between CS lines from two different complementation groups as is the abundance of replication-related DSBs. On the basis of this complementation we conclude that the UV and CPT sensitivities are distinct phenotypic traits arising from mutations in the CS A and B genes.

UI MeSH Term Description Entries
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D003057 Cockayne Syndrome A syndrome characterized by multiple system abnormalities including DWARFISM; PHOTOSENSITIVITY DISORDERS; PREMATURE AGING; and HEARING LOSS. It is caused by mutations of a number of autosomal recessive genes encoding proteins that involve transcriptional-coupled DNA REPAIR processes. Cockayne syndrome is classified by the severity and age of onset. Type I (classical; CSA) is early childhood onset in the second year of life; type II (congenital; CSB) is early onset at birth with severe symptoms; type III (xeroderma pigmentosum; XP) is late childhood onset with mild symptoms. Progeria-Like Syndrome,Cockayne Syndrome Type 3,Cockayne Syndrome Type C,Cockayne Syndrome, Group A,Cockayne Syndrome, Group B,Cockayne Syndrome, Group C,Cockayne Syndrome, Type A,Cockayne Syndrome, Type B,Cockayne Syndrome, Type C,Cockayne Syndrome, Type I,Cockayne Syndrome, Type II,Cockayne Syndrome, Type III,Dwarfism-Retinal Atrophy-Deafness Syndrome,Group A Cockayne Syndrome,Group B Cockayne Syndrome,Group C Cockayne Syndrome,Progeroid Nanism,Type A Cockayne Syndrome,Type B Cockayne Syndrome,Type C Cockayne Syndrome,Type I Cockayne Syndrome,Type II Cockayne Syndrome,Type III Cockayne Syndrome,Progeria Like Syndrome,Progeria-Like Syndromes,Syndrome, Cockayne,Syndrome, Progeria-Like
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated

Related Publications

S Squires, and A J Ryan, and H L Strutt, and R T Johnson
January 2023, Cellular and molecular neurobiology,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
September 1997, International journal of radiation biology,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
December 2011, Proceedings of the National Academy of Sciences of the United States of America,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
June 1982, Experimental and molecular pathology,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
June 2003, British journal of cancer,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
December 2010, DNA repair,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
February 2011, Oncology reports,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
January 2001, Biogerontology,
S Squires, and A J Ryan, and H L Strutt, and R T Johnson
March 2004, Oncogene,
Copied contents to your clipboard!