The genetic origin of minor histocompatibility antigens. 1993

D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
Jackson Laboratory, Bar Harbor, ME 04609.

The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

UI MeSH Term Description Entries
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008912 Minor Histocompatibility Loci Genetic loci responsible for the encoding of histocompatibility antigens other than those encoded by the MAJOR HISTOCOMPATIBILITY COMPLEX. The antigens encoded by these genes are often responsible for graft rejection in cases where histocompatibility has been established by standard tests. The location of some of these loci on the X and Y chromosomes explains why grafts from males to females may be rejected while grafts from females to males are accepted. In the mouse roughly 30 minor histocompatibility loci have been recognized, comprising more than 500 genes. Histocompatibility Loci, Minor,Histocompatibility Locus, Minor,Loci, Minor Histocompatibility,Locus, Minor Histocompatibility,Minor Histocompatibility Locus
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic

Related Publications

D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
January 1984, Survey of immunologic research,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
October 1990, Blood,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
November 1993, Experimental hematology,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
October 1997, Current opinion in immunology,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
July 1991, Trends in genetics : TIG,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
July 1991, Immunology letters,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
January 1993, Transplant immunology,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
February 1996, Current opinion in immunology,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
December 2002, Immunological reviews,
D C Roopenian, and G J Christianson, and A P Davis, and A R Zuberi, and L E Mobraaten
February 2017, Blood,
Copied contents to your clipboard!