Molecular cloning of the retrograde transport motor cytoplasmic dynein (MAP 1C). 1993

A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545.

Overlapping cDNAs encoding the entire heavy chain of cytoplasmic dynein (MAP 1C) have been obtained. A 4644 amino acid polypeptide containing four ATP-binding consensus sequences is predicted. Homology with the sea urchin flagellar outer arm dynein beta heavy chain is observed within the C-terminal two-thirds of the protein. The N-terminal third of the two polypeptides shows no clear relationship, suggesting that this region of MAP 1C is responsible for its association with retrograde organelles and other functions. Northern blot analysis reveals a 16.5 kb band in brain and other tissues. Southern blot analysis is consistent with a single cytoplasmic dynein gene. Thus, in contrast with cilia and flagella, which contain numerous forms of dynein, our results are consistent with the existence of only a single cytoplasmic dynein heavy chain gene, which appears to produce only a single transcript.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic

Related Publications

A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
February 1995, Biochemical Society transactions,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
September 1988, The Journal of cell biology,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
January 1987, Nature,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
March 1990, Cell biology international reports,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
December 2009, Nature reviews. Molecular cell biology,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
May 2003, Science (New York, N.Y.),
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
October 2019, European biophysics journal : EBJ,
A Mikami, and B M Paschal, and M Mazumdar, and R B Vallee
February 1989, Trends in neurosciences,
Copied contents to your clipboard!