Regulation of insulin-like growth factor binding protein-5 messenger ribonucleic acid expression and protein availability in rat osteoblast-like cells. 1993

C A Conover, and L K Bale, and J T Clarkson, and O Tørring
Endocrine Research Unit (C.A.C., L.K.B., J.T.C.), Mayo Clinic, Rochester, Minnesota 55905.

PTH treatment of UMR 106-01 rat osteosarcoma cells increased 20- to 100-fold medium levels of a discrete insulin-like growth factor binding protein (IGFBP) with M(r) of 29K. Northern analysis of UMR cellular RNA hybridized with a specific IGFBP-5 complementary DNA probe indicated a 6.0-kilobase transcript induced within 2 h in PTH-treated cells. IGFBP-5 messenger RNA (mRNA) abundance was maximal around 6 h and remained elevated after 24 h of treatment. Another rat osteosarcoma cell line (ROS 17/2.8) did not express IGFBP-5 mRNA and did not secrete 29K IGFBP. Induction of IGFBP-5 mRNA by PTH was blocked when RNA synthesis in UMR cells was inhibited by actinomycin D (Bu)2cAMP mimicked the effect of PTH on IGFBP-5 mRNA expression and protein secretion. In addition, a monoclonal antibody against IGF-I (Sm 1.2) inhibited the PTH-induced increase in medium IGFBP-5 without influencing IGFBP-5 transcript levels. Direct addition of IGF-I to UMR cell cultures increased medium IGFBP-5 levels approximately 14-fold, with a modest effect on IGFBP-5 mRNA levels. Studies comparing IGF-I, IGF-II, different IGF-I analogs, and insulin indicated that the predominant IGF effect on IGFBP-5 accumulation was type I IGF receptor independent. Thus, in UMR 106-01 cells, PTH and IGF-I increase extracellular concentrations of IGFBP-5 via distinct but coordinate mechanisms; PTH acts primarily to induce IGFBP-5 mRNA expression through a cAMP-mediated mechanism, and IGF-I appears to interact directly with IGFBP-5 protein to promote its accumulation.

UI MeSH Term Description Entries
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010281 Parathyroid Hormone A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates. Natpara,PTH (1-84),PTH(1-34),Parathormone,Parathyrin,Parathyroid Hormone (1-34),Parathyroid Hormone (1-84),Parathyroid Hormone Peptide (1-34),Hormone, Parathyroid
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

C A Conover, and L K Bale, and J T Clarkson, and O Tørring
April 1991, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
December 1991, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
October 1990, Molecular and cellular endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
April 1992, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
April 1988, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
January 1994, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
February 1992, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
March 1996, Endocrinology,
C A Conover, and L K Bale, and J T Clarkson, and O Tørring
June 1996, Endocrinology,
Copied contents to your clipboard!