Characterization of cross-reactive anti-DNA autoantibodies in murine lupus. 1993

T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
Department of Microbiology, University of Tennessee, Knoxville 37996.

The role of crossreactive anti-DNA autoantibodies in the pathogenesis of Systemic Lupus Erythematosus (SLE) and its counterpart in the mouse (murine lupus) remains undefined. Five murine monoclonal anti-DNA autoantibodies tested in ELISA and immunofluorescence assays were found to cross-react with a variety of both nucleic acid and non-nucleic acid antigens. These included double stranded DNA (dsDNA), single stranded DNA (ssDNA), transfer RNA (tRNA), and the murine thymoma cell lines WEHI-22, WEHI-7, and EL-4. The majority of the autoantibodies reacted with all antigens tested; none of the autoantibodies reacted with only one antigen. To determine if the multiple reactivities demonstrated by these hybridoma-derived monoclonal anti-DNA autoantibodies accurately reflects the in vivo, autoimmune environment, the same assays were used to measure the reactivities of autoantibodies secreted directly from unfused autoimmune spleen cells cultured in vitro. These spleen cell-derived autoantibodies were found to display reactivities very similar to those demonstrated by the monoclonal anti-DNA autoantibodies indicating that the hybridoma process itself does not appear to select and amplify reactivities which are not present in vivo. Initial molecular characterization of F11, a monoclonal anti-DNA autoantibody crossreactive with both dsDNA and ssDNA, revealed that it utilizes the same VH gene segment as an anti-DNA autoantibody specific for ssDNA. F11 was also found to utilize similar VH, D, and JH gene segments as an antibody directed against the hapten polymer (Glutamic acid60, Alanine30, Tyrosine10)n (GAT). Thus, the same Ig gene segments used to encode crossreactive anti-DNA autoantibodies can also be utilized by anti-DNA autoantibodies displaying strict antigen specificity as well as by antibodies directed against exogenous antigens.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007138 Immunoglobulin delta-Chains The class of heavy chains found in IMMUNOGLOBULIN D. They have a molecular weight of approximately 64 kDa and they contain about 500 amino acid residues arranged in four domains and an oligosaccharide component covalently bound to the Fc fragment constant region. Ig delta Chains,Immunoglobulins, delta-Chain,Immunoglobulin delta-Chain,delta Immunoglobulin Heavy Chain,delta Immunoglobulin Heavy Chains,delta-Chain Immunoglobulins,Chains, Ig delta,Immunoglobulin delta Chain,Immunoglobulin delta Chains,Immunoglobulins, delta Chain,delta Chain Immunoglobulins,delta Chains, Ig,delta-Chain, Immunoglobulin,delta-Chains, Immunoglobulin
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007144 Immunoglobulin J-Chains A 15 kDa "joining" peptide that forms one of the linkages between monomers of IMMUNOGLOBULIN A or IMMUNOGLOBULIN M in the formation of polymeric immunoglobulins. There is one J chain per one IgA dimer or one IgM pentamer. It is also involved in binding the polymeric immunoglobulins to POLYMERIC IMMUNOGLOBULIN RECEPTOR which is necessary for their transcytosis to the lumen. It is distinguished from the IMMUNOGLOBULIN JOINING REGION which is part of the IMMUNOGLOBULIN VARIABLE REGION of the immunoglobulin light and heavy chains. Ig J Chains,J-Chains, Immunoglobulin,Ig J-Peptide,Immunoglobulin J Polypeptide,Immunoglobulin J-Peptide,Chains, Ig J,Ig J Peptide,Immunoglobulin J Chains,Immunoglobulin J Peptide,J Chains, Ig,J Chains, Immunoglobulin,J Polypeptide, Immunoglobulin,J-Peptide, Ig,J-Peptide, Immunoglobulin,Polypeptide, Immunoglobulin J
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008814 Mice, Inbred NZB An inbred strain of mouse that is widely used as a model for AUTOIMMUNE DISEASES such as SYSTEMIC LUPUS ERYTHEMATOSUS. Mice, NZB,Mouse, Inbred NZB,Mouse, NZB,Inbred NZB Mice,Inbred NZB Mouse,NZB Mice,NZB Mice, Inbred,NZB Mouse,NZB Mouse, Inbred
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross

Related Publications

T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
September 1989, Journal of neuroimmunology,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
January 2004, Clinical and experimental immunology,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
January 2002, Lupus,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
September 1995, Brain, behavior, and immunity,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
December 1996, The Journal of clinical investigation,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
June 1986, Clinical immunology and immunopathology,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
August 1999, Pharmacology & therapeutics,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
October 1983, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
August 1985, Journal of immunology (Baltimore, Md. : 1950),
T A Banks, and F Babakhani, and B T Poulos, and J J Duffy, and R Kibler
November 1984, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!