Cyclic GMP-activated channels of the chick pineal gland: effects of divalent cations, pH, and cyclic AMP. 1993

S E Dryer, and D Henderson
Department of Biological Science, Florida State University, Tallahassee 32306.

Chick pineal cells maintained in dissociated cell culture express an intrinsic photosensitive circadian oscillator, but the mechanisms of phototransduction in avian pinealocytes are not fully understood. In this study, we have used inside-out patches to examine the characteristics of cyclic GMP-activated channels of chick pinealocytes in more detail, concentrating on the effects of factors known to modulate the secretion of melatonin and/or the function of circadian pacemakers. In most patches, the predominant conductance state was 19 pS in symmetrical 145 mM NaCl. But in some patches, a second cyclic GMP-activated channel with a unitary conductance of 29 pS was also present. The current flowing through cyclic GMP-activated channels was not affected by application of salines containing 1 microM Ca2+ to the cytoplasmic face of the patch membrane. By contrast, application of 1 mM Ca2+ caused a partial reduction in cyclic GMP-activated current at all membrane potentials. Application of 1-5 mM Mg2+ ions caused a virtually complete blockade of current at positive membrane potentials, but caused only a small decrease in current at negative membrane potentials. No obvious differences in the gating of cyclic GMP-activated channels were observed in pH 8.2, 7.4 or 6.2 salines. Application of salines containing 100 microM, 500 microM, or 1 mM cyclic AMP did not cause activation of the channels, but 5 mM cyclic AMP evoked a low level of channel activity. Application of 5 mM but not 100 microM cyclic AMP decreased the probability of channel activation caused by 20-100 microM cyclic GMP and also increased the percentage of openings to an 11 pS subconductance state. Thus, cyclic AMP acts as a weak partial agonist. Nevertheless, the gating of these channels does not seem to be controlled directly by physiologically relevant changes in intracellular Ca2+, pH, or cyclic AMP.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic

Related Publications

S E Dryer, and D Henderson
April 1976, Journal of neurochemistry,
S E Dryer, and D Henderson
May 1992, Biochemical Society transactions,
S E Dryer, and D Henderson
October 1994, Journal of neurochemistry,
S E Dryer, and D Henderson
June 1994, Agents and actions,
S E Dryer, and D Henderson
October 1973, Nature: New biology,
S E Dryer, and D Henderson
August 1997, Biochemical pharmacology,
Copied contents to your clipboard!