Characterization of sensory neurotransmission and its inhibition via alpha 2B-adrenoceptors and via non-alpha 2-receptors in rabbit iris. 1993

H Fuder, and M Selbach
Pharmakologisches Institut, Universität Mainz, Federal Republic of Germany.

To find out whether, and which type of, adrenoceptors mediate prejunctional inhibition of sensory neurotransmitter release from trigeminal fibres, the modulation of twitch response to electrical field stimulation on rabbit isolated iris was investigated. Evoked iris sphincter contractions consisted of a minor fast cholinergic and a large slow component. The latter was unaffected by atropine and guanethidine, hence nonadrenergic noncholinergic in nature (NANC), but nearly completely abolished by capsaicin pretreatment and by the neurokinin receptor antagonist spantide. The response was probably not mediated by NK2 receptors as SR 48,968, an NK2 selective nonpeptide antagonist, failed to reduce the response to the release of the endogenous neurokinin(s) (and exogenous substance P), but in part due to NK1 receptor activation as shown by a reduction of response by CP 96,345, an NK1 selective non-peptide antagonist, and in part perhaps mediated by NK3 receptors. A small neurokinin receptor antagonist- and capsaicin-insensitive NANC contraction is probably not mediated by CGRP receptors. The alpha 2-adrenoceptor agonist oxymetazoline inhibited the evoked NANC response (22 nmol/l, IC20; about 40%, maximum inhibition) without affecting the cholinergic response (up to 1 mumol/l) or the postjunctional iris sensitivity to exogenous substance P. The inhibition was antagonized by rauwolscine (apparent -log KB 8.04) and by the relatively alpha 2B-adrenoceptor selective antagonist ARC-239 (-log KB 8.51). The alpha 2- and imidazoline receptor agonist aganodine inhibited the evoked NANC response (0.25 mumol/l, IC20; about 30%, maximum inhibition) without affecting the postjunctional substance P responses. Rauwolscine 0.3 mumol/l failed to antagonize this effect. It is concluded that the release of sensory neurotransmitter(s) from trigeminal fibres in the rabbit eye may be inhibited by alpha 2B-adrenoceptors and by a non-alpha 2-receptor, perhaps an imidazoline receptor.

UI MeSH Term Description Entries
D007498 Iris The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
D007705 Kinins A generic term used to describe a group of polypeptides with related chemical structures and pharmacological properties that are widely distributed in nature. These peptides are AUTACOIDS that act locally to produce pain, vasodilatation, increased vascular permeability, and the synthesis of prostaglandins. Thus, they comprise a subset of the large number of mediators that contribute to the inflammatory response. (From Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 8th ed, p588) Kinin
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010109 Oxymetazoline A direct acting sympathomimetic used as a vasoconstrictor to relieve nasal congestion. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1251) Oxymetazoline Hydrochloride,Hydrochloride, Oxymetazoline
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Fuder, and M Selbach
July 1986, Naunyn-Schmiedeberg's archives of pharmacology,
H Fuder, and M Selbach
July 2000, European journal of pharmacology,
H Fuder, and M Selbach
January 1994, Journal of ocular pharmacology,
H Fuder, and M Selbach
July 1971, European journal of pharmacology,
H Fuder, and M Selbach
January 1989, European journal of pharmacology,
H Fuder, and M Selbach
August 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!