Metabolism of carbovir, a potent inhibitor of human immunodeficiency virus type 1, and its effects on cellular metabolism. 1993

W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
Kettering-Meyer Laboratory, Southern Research Institute, Birmingham, Alabama 35205.

Carbovir (CBV) [the (--)-enantiomer of the carbocyclic analog of 2',3'-dideoxy-2',3'-didehydroguanosine] is a potent inhibitor of human immunodeficiency virus type 1 (HIV) replication in vitro. We have characterized the metabolism of CBV and its effect on cellular metabolism in an effort to better understand its mechanism of action. CBV was primarily metabolized to the 5'-triphosphate of CBV (CBV-TP) to concentrations sufficient to inhibit HIV reverse transcriptase. Infection of CEM cells with HIV did not affect the metabolism of CBV. In CEM cells, there was no evidence of the degradation of CBV by purine nucleoside phosphorylase. The half-life of CBV-TP in CEM cells was 2.5 h, similar to that of the 5'-triphosphate of zidovudine (AZT). However, unlike the levels of the 5'-triphosphate of AZT, CBV-TP levels declined without evidence of a plateau. CBV did not affect the metabolism of AZT, and AZT did not affect the metabolism of CBV. A small amount of CBV was incorporated into DNA in intact CEM cells, and this incorporation was increased by incubation with mycophenolic acid, an inhibitor of IMP dehydrogenase. CBV specifically inhibited the incorporation of nucleic acid precursors into DNA but had no effect on the incorporation of radiolabeled precursors into RNA or protein. CBV did not decrease the level of TTP, dGTP, dCTP, or dATP. These results suggested that the cytotoxicity of CBV was due to the inhibition of DNA synthesis. Further studies are necessary to identify the target(s) responsible for growth inhibition.

UI MeSH Term Description Entries
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015224 Dideoxynucleosides Nucleosides that have two hydroxy groups removed from the sugar moiety. The majority of these compounds have broad-spectrum antiretroviral activity due to their action as antimetabolites. The nucleosides are phosphorylated intracellularly to their 5'-triphosphates and act as chain-terminating inhibitors of viral reverse transcription. 2',3'-Dideoxynucleosides,Dideoxyribonucleosides,ddNus,2',3' Dideoxynucleosides

Related Publications

W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
May 1993, Antimicrobial agents and chemotherapy,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
November 1994, Biochemical and biophysical research communications,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
October 1990, Biochemistry,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
May 1997, Antimicrobial agents and chemotherapy,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
June 1994, Journal of virology,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
August 1992, Current opinion in immunology,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
March 2008, Antimicrobial agents and chemotherapy,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
February 1991, Antiviral research,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
January 2017, Journal of virology,
W B Parker, and S C Shaddix, and B J Bowdon, and L M Rose, and R Vince, and W M Shannon, and L L Bennett
May 2000, Clinical therapeutics,
Copied contents to your clipboard!