The interferon-stimulable response elements of two human genes detect overlapping sets of transcription factors. 1993

J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
Imperial Cancer Research Fund Laboratories, London, England.

We have previously reported three types of DNA-protein complexes, formed specifically with the interferon-stimulable response elements (ISRE) in the 5' flanking DNA of the interferon-inducible 6-16 and 9-27 genes, a type-I interferon-inducible early complex involving factor E (ISGF3), M and G complexes induced more slowly in response to type-I and type-II interferons, respectively and C1/C2, a constitutive complex(s). Similar complexes have been reported by others. The operationally defined band-shift complexes M, G and C1/C2 are shown here to be heterogeneous and to differ in their factor content, depending on the ISRE probe. With a 9-27 ISRE probe the M, G and C1/C2 complexes all contain the gamma subunit of ISGF3, which is present constitutively but is induced in response to IFN-alpha (to yield M) or IFN-gamma (to yield G). In contrast, a 6-16 ISRE probe forms band-shift complexes with IFN-alpha-inducible and IFN-gamma-inducible IRF1 and IRF2. With a 6-16 ISRE probe, therefore, M and G each correspond to two complexes which co-migrate in band-shift assays, one corresponding to IRF1, the other to IRF2. With this probe, the constitutive complex C1/C2 corresponds predominantly to IRF2. Consistent with this, IRF1 and IRF2 have lower affinity for the 9-27 ISRE than the 6-16 ISRE, whereas the reverse is true for E (ISGF3) and its gamma subunit. Relatively small differences in affinity appear sufficient to determine whether or not a band-shift complex is detected. In the case of IRF1 and IRF2, the different affinities for the 6-16 and 9-27 probes are dominated by a dinucleotide sequence in the centre of the 14-nucleotide 'core' ISRE. In contrast, preferential binding of E (ISGF3) by the 39-nucleotide 9-27 ISRE-containing sequence, although ISRE dependent, appears to be mediated by sequences 3' of the 'core' ISRE. Accordingly, these complexes can be simultaneously assayed using a hybrid probe consisting of the 5' flanking region and 'core' ISRE sequences from the 6-16 gene and sequences immediately 3' of the 'core' 9-27 ISRE sequence. No evidence was obtained for a modulatory role in factor binding for a pseudo-ISRE sequence close to ISRE in the 9-27 gene. The precise roles of IRF1 and IRF2 in the induction of IFN-beta and the control of interferon-inducible gene expression remain to be established.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010750 Phosphoproteins Phosphoprotein
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
August 1983, Cell,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
May 2022, Proceedings of the National Academy of Sciences of the United States of America,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
June 2003, The Journal of general virology,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
March 2013, Journal of biosciences,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
June 1990, Cell,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
February 2009, Bioinformatics (Oxford, England),
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
June 2007, Memory & cognition,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
May 2005, Journal of virology,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
March 2005, Cancer immunology, immunotherapy : CII,
J Parrington, and N C Rogers, and D R Gewert, and R Pine, and S A Veals, and D E Levy, and G R Stark, and I M Kerr
May 2005, Genome research,
Copied contents to your clipboard!