Processivity of uracil DNA glycosylase. 1993

M Higley, and R S Lloyd
California State University, Long Beach 90840.

The purpose of this study was to determine the mechanism by which uracil DNA glycosylase locates uracil residues within double-stranded DNA. Using reaction conditions that contained low salt concentrations, the addition of uracil DNA glycosylase to plasmid DNAs containing multiple, randomly incorporated uracils resulted in the accumulation of form III DNA while unreacted form I DNA was still present. These data suggested that the enzyme utilizes a one-dimensional DNA-scanning mechanism such that this linear DNA arose by the accumulation of many single-strand breaks within the plasmid prior to enzyme dissociation. Reactions containing higher concentrations of uracil DNA glycosylase revealed a further accumulation of form III DNA after all form I DNA had been lost. These results suggested a partial (1.5-2 kb) enzyme processivity since the enzyme does not incise at all uracil bases on the DNA molecule prior to dissociation from that DNA. Since DNA scanning is regulated by electrostatic interactions, the processivity of the enzyme was evaluated through kinetic analyses of incision at various salt concentrations. At NaCl concentrations (< 50 mM), a significant amount of form III DNA accumulated while there were still unreacted form I DNAs present. In contrast, the accumulation of form III DNA was delayed at higher salt concentrations and the overall accumulation of form III DNA was less than that monitored at lower salt concentrations. DNAs were also analyzed by denaturing agarose gel electrophoresis in order to measure the average distance between strand breaks. Southern hybridizations showed a greater accumulation of breaks in DNAs that were reacted with the uracil DNA glycosylase at the lower salt concentrations, confirming a partial processivity for the enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009699 N-Glycosyl Hydrolases A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars. Glycoside Hydrolases, Nitrogen-linked,Hydrolases, N-Glycosyl,Nucleosidase,Nucleosidases,Nucleoside Hydrolase,Nitrogen-linked Glycoside Hydrolases,Nucleoside Hydrolases,Glycoside Hydrolases, Nitrogen linked,Hydrolase, Nucleoside,Hydrolases, N Glycosyl,Hydrolases, Nitrogen-linked Glycoside,Hydrolases, Nucleoside,N Glycosyl Hydrolases,Nitrogen linked Glycoside Hydrolases
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D045647 DNA Glycosylases A family of DNA repair enzymes that recognize damaged nucleotide bases and remove them by hydrolyzing the N-glycosidic bond that attaches them to the sugar backbone of the DNA molecule. The process called BASE EXCISION REPAIR can be completed by a DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE which excises the remaining RIBOSE sugar from the DNA. DNA N-glycosidase,DNA Glycosylase,Methylpurine DNA Glycosylase,DNA Glycosylase, Methylpurine,DNA N glycosidase,Glycosylase, DNA,Glycosylase, Methylpurine DNA,Glycosylases, DNA
D051981 Uracil-DNA Glycosidase An enzyme that catalyzes the HYDROLYSIS of the N-glycosidic bond between sugar phosphate backbone and URACIL residue during DNA synthesis. Ung DNA Glycosylase,Ura-DNA Glycosidase,Ura-DNA Glycosylase,Uracil DNA Glycosylase,Uracil N-Glycosidase,Uracil N-Glycosylase,Uracil-DNA Glycosylase,DNA Glycosylase, Ung,DNA Glycosylase, Uracil,Glycosidase, Ura-DNA,Glycosidase, Uracil-DNA,Glycosylase, Ung DNA,Glycosylase, Ura-DNA,Glycosylase, Uracil DNA,Glycosylase, Uracil-DNA,N-Glycosidase, Uracil,N-Glycosylase, Uracil,Ura DNA Glycosidase,Ura DNA Glycosylase,Uracil DNA Glycosidase,Uracil N Glycosidase,Uracil N Glycosylase

Related Publications

M Higley, and R S Lloyd
April 1982, The Journal of biological chemistry,
M Higley, and R S Lloyd
August 1981, Photochemistry and photobiology,
M Higley, and R S Lloyd
January 1980, Methods in enzymology,
M Higley, and R S Lloyd
September 1981, FEBS letters,
M Higley, and R S Lloyd
January 1994, Molekuliarnaia biologiia,
M Higley, and R S Lloyd
September 2015, Nucleic acids research,
Copied contents to your clipboard!