Evidence for the corelease of dynorphin and glutamate from rat hippocampal mossy fiber terminals. 1993

T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, North Carolina 27858.

Hippocampal mossy fiber (MF) nerve endings may be isolated in a subcellular fraction (P3) that releases both prodynorphin-derived peptides and glutamate (Glu) in a calcium-dependent manner when depolarized. However, this isolation procedure does not yield a pure preparation of MF synaptosomes. The present study evaluates the proportion of dynorphin (Dyn) and Glu that is released from synaptosomes in the P3 fraction that are of MF origin. We have addressed this issue by determining the degree to which a selective lesion of the dentate granule cell/MF system in vivo concomitantly reduces the exocytosis of Dyn and Glu from the P3 subcellular fraction. Unilateral injections of colchicine into the dentate gyrus resulted in a substantial and selective degeneration of the granule cell/MF pathway in the rat hippocampal formation. The overall integrated density of the Timm-stained band, which corresponds to the position of the MF terminal field, was estimated to be reduced by 75%. After this extensive loss of MF boutons, the K(+)-evoked release of Dyn and Glu from the P3 fraction was reduced by 95 and 51%, respectively. The loss of Timm staining and evoked Dyn release indicate that colchicine effectively eliminated MF synaptosomes from the P3 fraction. Those subcellular entities that were not destroyed by colchicine comprised approximately 50% of the protein and evoked Glu release measured by using the P3 fraction. In addition, the present results demonstrate that the inhibitory potency of the kappa opioid agonist U-50,488H was not altered by the elimination of MF boutons from this synaptosomal preparation. This finding indicates that U-50, 488H is capable of suppressing Glu exocytosis from both MF and non-MF synaptosomes. These results are consistent with the hypothesis that Dyn peptides and Glu are co-released from hippocampal MF terminals.

UI MeSH Term Description Entries
D008297 Male Males
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D010640 Phenothiazines Compounds containing dibenzo-1,4-thiazine. Some of them are neuroactive.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
May 1991, Brain research,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
January 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
March 1992, Neuroscience letters,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
September 1988, Brain research bulletin,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
January 1990, Acta histochemica. Supplementband,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
January 2006, Nature protocols,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
February 1999, FEBS letters,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
January 2014, Frontiers in cellular neuroscience,
T A Conner-Kerr, and D R Simmons, and G M Peterson, and D M Terrian
November 1990, Neuroscience letters,
Copied contents to your clipboard!