Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. 1993

G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
Dipartimento di Fisiologia e Biochimica Generali, Università di Milano, Italy.

1. Voltage and current clamp recordings were performed on CA1 rat hippocampal pyramidal cells using the patch clamp technique on "in vitro" slice preparations. 2. Hyperpolarizations from a holding potential of -35 mV elicited activation of the hyperpolarization-activated current (Ih) starting at voltages near -50 mV. 3. Ih recorded in voltage clamp conditions was blocked by external caesium (5 mM). 4. Raising the external K concentration from 4.35 to 24.35 mM sensibly increased the slope of the current-voltage (I/V) curve. Decreasing the external Na concentration from 133.5 to 33.5 mM depressed Ih without grossly altering the I/V slope. 5. The Ih fully activated I/V relation measured in the range -140 to -45 mV was linear with an extrapolated reversal at -17.0 +/- -1.6 (SE) mV. The current activation curve comprised the range between about -50 and -140 mV with a half-maximal activation at about -98 mV. 6. Perfusion of unclamped neurons with Cs (2 mM) hyperpolarized their resting potential by 3.8 +/- 0.2 mV and decreased the membrane conductance, as expected if Ih were activated at rest. Firing caused by depolarizing current steps was prevented by Cs-induced hyperpolarization, and could be restored by returning the membrane voltage to resting level by constant current injection. 7. The Cd-insensitive (medium-duration) afterhyperpolarization (AHP) elicited by a train of action potentials at -60 mV had an amplitude of 3.9 +/- 0.3 mV and was nearly fully abolished by 2 mM Cs (82.7 +/- 7.4%). Cs removed the depolarizing part of the afterhyperpolarization as expected if Ih activation was responsible for this phase.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
February 2003, Epilepsia,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
February 1995, Journal of neurophysiology,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
October 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
October 2002, Neuroscience letters,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
October 2001, Neuroscience letters,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
September 1999, The European journal of neuroscience,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
January 1995, Experimental brain research,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
October 1992, The Journal of pharmacology and experimental therapeutics,
G Maccaferri, and M Mangoni, and A Lazzari, and D DiFrancesco
August 1986, Brain research,
Copied contents to your clipboard!