Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein. 1993

G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Universita di Perugia, Italy.

A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005678 G(M2) Ganglioside A glycosphingolipid that accumulates due to a deficiency of hexosaminidase A or B (BETA-N-ACETYLHEXOSAMINIDASES), or GM2 activator protein, resulting in GANGLIOSIDOSES, heredity metabolic disorders that include TAY-SACHS DISEASE and SANDHOFF DISEASE. GM2 Ganglioside,Tay-Sachs Disease Ganglioside,Ganglioside GM2,GM2, Ganglioside,Ganglioside, GM2,Ganglioside, Tay-Sachs Disease,Tay Sachs Disease Ganglioside
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
December 1994, Genomics,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
September 1990, Journal of biochemistry,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
August 1985, FEBS letters,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
June 1986, Nucleic acids research,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
October 1986, Biochimica et biophysica acta,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
March 1989, Biochemistry international,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
July 1989, FEBS letters,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
September 1983, The Journal of biological chemistry,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
November 1984, Gene,
G Bellachioma, and J L Stirling, and A Orlacchio, and T Beccari
March 1983, Nucleic acids research,
Copied contents to your clipboard!