Muscle membrane preparation restores sensitivity to acetylcholine in cultured chick ciliary ganglion neurons. 1993

J M Spitsbergen, and J B Tuttle
Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908.

Ciliary ganglion (CG) neurons grown in culture in the absence of muscle cells rapidly lose sensitivity to acetylcholine (ACh), while neurons grown in the presence of muscle or muscle cell membranes maintain sensitivity to ACh for extended periods of time. The present study examined whether exposure to muscle membrane preparation or stimulation of cAMP-dependent processes could restore sensitivity to ACh in cultured neurons which had lost responsiveness to ACh. CG neurons from 11- to 14-day-old chick embryos were grown on collagen substrate in the absence of muscle cells. Sensitivity to ACh was assessed by measuring peak current responses following application of ACh (IACh) to neurons under whole-cell voltage clamp. In control cultures IACh decreased from an average of 837 pA the day of plating to 145 pA following 4 days in culture. Stimulation of cAMP-dependent processes with forskolin and 3-isobutyl-1-methylxanthine (IBMX) or 8'Br-cAMP and IBMX had variable effects on IACh. These treatments increased peak IACh in some neurons maintained in culture for less than 48 h. Treatment with these agents decreased peak IACh in cultures which were more than 48 h old. Exposure of neurons, which had lost sensitivity to ACh in culture, to muscle membranes increased IACh 2- to 3-fold over 24 to 48 h. This membrane-induced restoration of sensitivity to ACh was blocked by exposure to the protein synthesis inhibitor cycloheximide. Stimulation of cAMP-dependent processes in neurons exposed to muscle membrane decreased IACh. In conclusion, these results indicate that some element associated with the membranes of muscle cells has the ability to restore ACh responsiveness to CG neurons which have become insensitive to ACh in culture.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D005726 Ganglia, Parasympathetic Ganglia of the parasympathetic nervous system, including the ciliary, pterygopalatine, submandibular, and otic ganglia in the cranial region and intrinsic (terminal) ganglia associated with target organs in the thorax and abdomen. Parasympathetic Ganglia,Ciliary Ganglion,Ganglion, Parasympathetic,Otic Ganglia,Pterygopalatine Ganglia,Submandibular Ganglia,Ciliary Ganglions,Ganglia, Otic,Ganglia, Pterygopalatine,Ganglia, Submandibular,Ganglias, Otic,Ganglias, Pterygopalatine,Ganglias, Submandibular,Ganglion, Ciliary,Ganglions, Ciliary,Otic Ganglias,Parasympathetic Ganglion,Pterygopalatine Ganglias,Submandibular Ganglias

Related Publications

J M Spitsbergen, and J B Tuttle
June 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J M Spitsbergen, and J B Tuttle
September 1985, Federation proceedings,
J M Spitsbergen, and J B Tuttle
March 1981, Brain research,
J M Spitsbergen, and J B Tuttle
January 1987, Developmental biology,
J M Spitsbergen, and J B Tuttle
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J M Spitsbergen, and J B Tuttle
August 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J M Spitsbergen, and J B Tuttle
February 2000, Molecular and cellular neurosciences,
Copied contents to your clipboard!