Poly(ethylene glycol)-induced fusion and rupture of dipalmitoylphosphatidylcholine large, unilamellar extruded vesicles. 1993

D Massenburg, and B R Lentz
Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill 27599-7260.

High concentrations (> or = 20 wt %) of poly(ethylene glycol) (PEG) induce large, unilamellar, dipalmitoylphosphatidylcholine model membrane vesicles to fuse when the bilayers contain small amounts of amphipathic peturbant molecules. In addition to fusion, similar concentrations of PEG induce these vesicles to leak their contents. In this paper, we have asked if fusion could occur independently of leakage or if fusion might be described as local bilayer rupture followed by resealing. By following the release of MW 10,000 fluoresceinated dextran trapped inside vesicles, it was determined that PEG-induced leakage was the result of major membrane disruption and not small-pore formation. Fusion of vesicles containing 0.5 mol % palmitic acid was clearly observed at 20 wt % PEG, while 25 wt % was needed to cause rupture. On the other hand, vesicles containing 0.5 mol % lysophosphatidylcholine ruptured at roughly the same concentration needed to induce rupture. Two methods were developed for removing PEG so that fusion products could be characterized. Quasi-elastic light scattering demonstrated that fusing vesicles grew in size and that nonfusing vesicles did not. Moreover, PEG concentrations that induced rupture led to the appearance of species with mean diameters much larger than those of fused vesicles. High-resolution nuclear magnetic resonance showed that the population of large vesicles that correlated with rupture was composed of multilamellar vesicles while the population resulting from fusion alone remained unilamellar. We conclude that, upon incubation with and subsequent removal of PEG, vesicles were either unaffected, or fused to form larger, unilamellar vesicles, or ruptured to form larger, nonunilamellar species.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008244 Lysophosphatidylcholines Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties. Lysolecithin,Lysolecithins,Lysophosphatidylcholine
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl

Related Publications

D Massenburg, and B R Lentz
September 1984, Biochimica et biophysica acta,
D Massenburg, and B R Lentz
December 1987, Biochimica et biophysica acta,
D Massenburg, and B R Lentz
April 1987, Biochimica et biophysica acta,
Copied contents to your clipboard!