Ribosome-binding protein p34 is a member of the leucine-rich-repeat-protein superfamily. 1993

T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
Department of Biosystem Science, Graduate School of Science and Technology, Niigata University, Japan.

Protein p34 is a non-glycosylated membrane protein characteristic of rough microsomes and is believed to play a role in the ribosome-membrane association. In the present study we isolated cDNA encoding p34 from a rat liver cDNA library and determined its complete amino acid sequence. p34 mRNA is 3.2 kb long and encodes a polypeptide of 307 amino acids with a molecular mass of about 34.9 kDa. Primary sequence analysis, coupled with biochemical studies on the topology, suggested that p34 is a type II signal-anchor protein; it is composed of a large cytoplasmic domain, a membrane-spanning segment and a 38-amino-acid-long luminally disposed C-terminus. The cytoplasmic domain of p34 has several noteworthy structural features, including a region of 4.5 tandem repeats of 23-24 amino acids. The repeated motif shows structural similarity to the leucine-rich repeat which is found in a variety of proteins widely distributed among eukaryotic cells and which potentially functions in mediating protein-protein interactions. The cytoplasmic domain also contains a characteristic hydrophilic region with abundant charged amino acids. These structural regions may be important for the observed ribosome-binding activity of the p34 protein.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
January 2002, Biochemical and biophysical research communications,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
September 1997, Genomics,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
June 1998, Oncogene,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
October 1994, Trends in biochemical sciences,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
April 1997, Proceedings of the National Academy of Sciences of the United States of America,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
March 2002, Molecular plant-microbe interactions : MPMI,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
August 1998, The Plant cell,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
October 2012, Molecules and cells,
T Ohsumi, and T Ichimura, and H Sugano, and S Omata, and T Isobe, and R Kuwano
June 1990, The EMBO journal,
Copied contents to your clipboard!