Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase. 1993

J C Hsieh, and S Zinnen, and P Modrich
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.

The kinetic pathway of DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase (HIV RT) as determined by pre-steady-state methods using a defined primer/template is as follows, [formula: see text] where E is RT, Dn,n+1 is primer/template, dNTP is deoxyribonucleoside triphosphate, and PPi is pyrophosphate. The rate-determining step for enzyme turnover in single nucleotide addition is the dissociation of enzyme from DNA (k6 = 0.11 s-1). The observation of an E'.DNA.dNTP intermediate by pulse-chase analysis and the absence of a phosphorothioate elemental effect identified the rate-limiting step for nucleotide addition as a conformational change of the E.DNA.dNTP complex (k3 = 83 s-1) prior to the chemical step. Biphasic kinetics of single-turnover pyrophosphorolysis suggested that this conformational change (k-3 = 0.3 s-1) is also rate-limiting for the reverse reaction. The equilibrium constant for the chemical step (K4) is 3.8, in slight favor of the forward reaction. The large equilibrium constant (K3 = 280) for the conformational change effectively renders nucleotide addition kinetically irreversible. The dissociation constant for primer/template is 26 nM, and the association rate of enzyme and DNA (k1) is 2.3 x 10(6) M-1 s-1. Equilibrium dissociation constants for dTTP and PPi are 18 microM and 7.2 mM, respectively. Mg2+ enhances productive interaction of RT with DNA as judged by a 50% increase in burst amplitude in the single nucleotide addition reaction and by an 8-fold decrease in KD for the RT.DNA complex as determined by gel mobility shift assay. Secondary interactions of the RT.DNA complex with free DNA were observed in the absence of Mg2+.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012194 RNA-Directed DNA Polymerase An enzyme that synthesizes DNA on an RNA template. It is encoded by the pol gene of retroviruses and by certain retrovirus-like elements. EC 2.7.7.49. DNA Polymerase, RNA-Directed,RNA-Dependent DNA Polymerase,Reverse Transcriptase,RNA Transcriptase,Revertase,DNA Polymerase, RNA Directed,DNA Polymerase, RNA-Dependent,RNA Dependent DNA Polymerase,RNA Directed DNA Polymerase
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human

Related Publications

J C Hsieh, and S Zinnen, and P Modrich
April 1993, The Journal of biological chemistry,
J C Hsieh, and S Zinnen, and P Modrich
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
J C Hsieh, and S Zinnen, and P Modrich
July 1977, Blut,
J C Hsieh, and S Zinnen, and P Modrich
April 1989, The Journal of biological chemistry,
J C Hsieh, and S Zinnen, and P Modrich
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
J C Hsieh, and S Zinnen, and P Modrich
January 1994, Molekuliarnaia biologiia,
J C Hsieh, and S Zinnen, and P Modrich
July 2002, Antimicrobial agents and chemotherapy,
J C Hsieh, and S Zinnen, and P Modrich
April 1988, The Journal of biological chemistry,
Copied contents to your clipboard!