Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. 1993

A Morel, and P E Garraghty, and J H Kaas
Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240.

Microelectrode recordings were used to investigate the tonotopic organization of auditory cortex of macaque monkeys and guide the placement of injections of wheat germ agglutinin-horse radish peroxidase (WGA-HRP) and fluorescent dyes. Anatomical and physiological results were later related to histological distinctions in the same brains after sections were processed for cytoarchitecture, myeloarchitecture, acetylcholinesterase (AchE), or cytochrome oxidase (CO). The experiments produced several major findings. (1) Neurons throughout a broad expanse of cortex were highly responsive to pure tones, and best frequencies could be determined for neurons in arrays of recording sites. (2) The microelectrode recordings revealed two systematic representations of tone frequencies, the primary area (AI) and a primary-like rostral field (R) as previously described. The representation of high to low frequency tones in A1 was largely caudorostral along the plane of the sulcus. A reversal of the order of representation of frequencies occurred in R. (3) AI and R together were coextensive with a koniocellular, densely myelinated zone that expressed high levels of AchE and CO. These architectonic features were somewhat less pronounced in R than AI, but a clear border between the two areas was not apparent. (4) Cortex bordering AI and R was less responsive to tones, but when best frequencies for neurons could be determined, they matched those for adjoining parts of AI and R. (5) Architectonically distinct regions were apparent within some of the cortex bordering AI and R. (6) The major ipsilateral cortical connections of AI were with R and cortex immediately lateral and medial to AI. (7) Callosal connections of AI were predominantly with matched locations in the opposite AI, but they also included adjoining fields. (8) Neurons in the ventral (MGV), medial (MGM), and dorsal (MGD) nuclei of the medial geniculate complex projected to AI and cortex lateral to AI. (9) Injections in cortex responsive to high frequency tones labeled more dorsal parts of MGV than injections in cortex responsive to low frequency tones.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory

Related Publications

A Morel, and P E Garraghty, and J H Kaas
April 1976, The Journal of comparative neurology,
A Morel, and P E Garraghty, and J H Kaas
September 1997, The Journal of comparative neurology,
A Morel, and P E Garraghty, and J H Kaas
January 1999, Brain research,
A Morel, and P E Garraghty, and J H Kaas
March 1999, The European journal of neuroscience,
A Morel, and P E Garraghty, and J H Kaas
October 1998, The Journal of comparative neurology,
A Morel, and P E Garraghty, and J H Kaas
May 1998, The Journal of comparative neurology,
A Morel, and P E Garraghty, and J H Kaas
January 1982, Experimental neurology,
A Morel, and P E Garraghty, and J H Kaas
April 2010, NeuroImage,
A Morel, and P E Garraghty, and J H Kaas
February 1988, Electroencephalography and clinical neurophysiology,
A Morel, and P E Garraghty, and J H Kaas
November 1994, Brain research,
Copied contents to your clipboard!