Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution. 1995

G Schneider, and J Schuchhardt, and P Wrede
Freie Universität Berlin, Institut für Medizinische/Technische Physik und Lasermedizin, AG Molekulare Bioinformatik, Germany.

Artificial neural networks were used for extraction of characteristic physiochemical features from mitochondrial matrix metalloprotease target sequences. The amino acid properties hydrophobicity and volume were used for sequence encoding. A window of 12 residues was employed, encompassing positions -7 to +5 of precursors with cleavage sites. Two sets of noncleavage site examples were selected for network training which was performed by an evolution strategy. The weight vectors of the optimized networks were visualized and interpreted by Hinton diagrams. A neural filter system consisting of 13 perceptron-type networks accurately classified the data. It served as the fitness function in a simulated molecular evolution procedure for sequence-oriented de novo design of idealized cleavage sites. A detailed description of the strategy is given. Several putative high-quality cleavage sites were obtained revealing the critical nature of the residues in the positions -2 and -5. Charged residues seem to have a major influence on cleavage site function.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009492 Neurospora crassa A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies. Chrysonilia crassa
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

G Schneider, and J Schuchhardt, and P Wrede
February 2019, Angewandte Chemie (International ed. in English),
G Schneider, and J Schuchhardt, and P Wrede
April 2002, FEBS letters,
G Schneider, and J Schuchhardt, and P Wrede
January 1994, The Journal of biological chemistry,
G Schneider, and J Schuchhardt, and P Wrede
October 2014, Bioinformatics (Oxford, England),
G Schneider, and J Schuchhardt, and P Wrede
January 2012, PloS one,
G Schneider, and J Schuchhardt, and P Wrede
January 2021, Methods in molecular biology (Clifton, N.J.),
G Schneider, and J Schuchhardt, and P Wrede
October 1998, Journal of protein chemistry,
Copied contents to your clipboard!