5-HT6 receptors positively coupled to adenylyl cyclase in striatal neurones in culture. 1994

M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
CNRS UPR 9023, Mécanismes Moléculaires des Communications Cellulaires, C.C.I.P.E., Montpellier, France.

5-HT receptor positively coupled to adenylyl cyclase in striatal neurones in culture does not correspond to the 5-HT4 receptor. 5-HT induces an increase in cAMP level with an EC50 of 125 nM. 5-HT agonists displayed the following rank order of potencies 5-HT > LSD > 5-MeOT > 5-CT. 8-OH-DPAT, RU 24969 and cisapride were inactive. The most efficacious antagonists were methiothepin and tricyclic antipsychotic drugs (clozapine, amitriptyline and nortryptyline). The pharmacological profile defined by both functional studies (cAMP level) and binding experiments ([125I]-LSD binding), and its localization in striatal neurones are in favour of the presence of the recently cloned 5-HT6 receptor in these cells.

UI MeSH Term Description Entries
D008238 Lysergic Acid Diethylamide Semisynthetic derivative of ergot (Claviceps purpurea). It has complex effects on serotonergic systems including antagonism at some peripheral serotonin receptors, both agonist and antagonist actions at central nervous system serotonin receptors, and possibly effects on serotonin turnover. It is a potent hallucinogen, but the mechanisms of that effect are not well understood. LSD,Lysergide,LSD-25,Lysergic Acid Diethylamide Tartrate,Acid Diethylamide, Lysergic,Diethylamide, Lysergic Acid,LSD 25
D008719 Methiothepin A serotonin receptor antagonist in the CENTRAL NERVOUS SYSTEM used as an antipsychotic. Metitepine,Methiothepin Maleate,Methiothepine,Maleate, Methiothepin
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin

Related Publications

M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
February 1997, British journal of pharmacology,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
June 1999, Naunyn-Schmiedeberg's archives of pharmacology,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
August 1994, Journal of neurochemistry,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
January 2000, Prostaglandins, leukotrienes, and essential fatty acids,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
October 1994, Naunyn-Schmiedeberg's archives of pharmacology,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
March 1989, European journal of pharmacology,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
January 1994, Biochemical and biophysical research communications,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
January 1988, Annual review of cell biology,
M Sebben, and H Ansanay, and J Bockaert, and A Dumuis
December 1996, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!