Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences. 1994

Y P Zhang, and O A Ryder
Kunming Institute of Zoology, Chinese Academy of Sciences.

The phylogenetic relationships among some bear species are still open questions. We present here mitochondrial DNA sequences of D-loop region, cytochrome b, 12S rRNA, tRNA(Pro), and tRNA(Thr) genes from all bear species and the giant panda. A series of evolutionary trees with concordant topology has been derived based on the combined data set of all of the mitochondrial DNA sequences, which may have resolved the evolutionary relationships of all bear species: the ancestor of the spectacled bear diverged first, followed by the sloth bear; the brown bear and polar bear are sister taxa relative to the Asiatic black bear; the closest relative of the American black bear is the sun bear. Primers for forensic identification of the giant panda and bears are proposed. Analysis of these data, in combination with data from primates and antelopes, suggests that relative substitutional rates between different mitochondrial DNA regions may vary greatly among different taxa of the vertebrates.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002335 Carnivora An order of MAMMALS, usually flesh eaters with appropriate dentition. Suborders include the terrestrial carnivores Fissipedia, and the aquatic carnivores CANIFORMIA.
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000836 Animals, Zoo Animal population groups or individual animals that reside in captivity at a zoological park. Animal, Zoo,Zoo Animal,Zoo Animals
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001503 Ursidae The family of carnivorous or omnivorous bears, having massive bodies, coarse heavy fur, relatively short limbs, and almost rudimentary tails. Ailuropoda,Bears,Black Bears,Giant Pandas,Grizzly Bears,Pandas, Giant,Pandas, Greater,Polar Bears,Spectacled Bear,Tremarctos,Ursus,Bear,Bear, Black,Bear, Grizzly,Bear, Polar,Bear, Spectacled,Bears, Black,Bears, Grizzly,Bears, Polar,Bears, Spectacled,Black Bear,Giant Panda,Greater Panda,Greater Pandas,Grizzly Bear,Panda, Giant,Panda, Greater,Polar Bear,Spectacled Bears
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

Y P Zhang, and O A Ryder
June 1996, Molecular phylogenetics and evolution,
Y P Zhang, and O A Ryder
November 1991, Molecular biology and evolution,
Y P Zhang, and O A Ryder
February 2003, Molecular phylogenetics and evolution,
Y P Zhang, and O A Ryder
December 2004, Molecular phylogenetics and evolution,
Y P Zhang, and O A Ryder
September 2001, Molecular phylogenetics and evolution,
Copied contents to your clipboard!