Cesium abolishes the barium-induced pacemaker potential and current in guinea pig ventricular myocytes. 1994

J B Shen, and M Vassalle
Department of Physiology, State University of New York, Health Science Center, Brooklyn 11203.

BACKGROUND The ability of cesium to block barium-induced diastolic depolarization ("Ba-DD") and pacemaker current was tested in isolated ventricular myocytes. Because Ba-DD is due to decreasing K+ conductance and there is no I(f) at the resting potential, this approach permits verification of whether Cs+ is a specific blocker of i(f) or if it instead also blocks a K+ pacemaker current. RESULTS Guinea pig isolated ventricular myocytes were studied by a discontinuous, single electrode, voltage clamp method. During hyperpolarizing voltage clamp steps from -80 up to -140 mV in Tyrode's solution, the inward current increased as a function of voltage but did not change as a function of time (no I(f) or K+ depletion). Cesium (4 mM) reduced the current size during the hyperpolarizing steps but did not induce or unmask time-dependent currents. Barium (0.05 to 0.1 mM) induced diastolic depolarization, and, in its presence, depolarizing voltage clamp steps were followed by an outward tail current that reversed at -92.0 +/- 1.3 mV. Outward tail currents were larger at -50 mV than at the resting potential, and inward tail currents decayed more rapidly and to a larger extent during larger hyperpolarizing steps. In the presence of Ba2+, Cs+ (4 mM) had little effect on the steady-state current but markedly reduced or abolished undershoot, Ba-DD, and time-dependent tail currents at potentials both positive and negative to the resting potential. Cs+ had a smaller effect on the steady-state current-voltage (I-V) relation in the presence than in the absence of Ba2+, as part of the IK1 channels were already blocked by Ba2+ and the time-dependent changes induced by Ba2+ were not present. Both Ba2+ and Cs+ had little blocking effect on the steady-state current positive to the negative slope region of the I-V relation. CONCLUSIONS In ventricular myocytes, Cs+ abolishes the Ba(2+)-induced pacemaker current by blocking the time-dependent change in K+ conductance, not by blocking I(f). Because Cs+ can also block a decaying K+ pacemaker current, the abolition of a pacemaker current by Cs+ in other cardiac tissues cannot be taken as unequivocal proof that the blocked current is I(f).

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J B Shen, and M Vassalle
January 1988, The Journal of physiology,
J B Shen, and M Vassalle
December 2010, The Journal of membrane biology,
J B Shen, and M Vassalle
October 1994, The American journal of physiology,
J B Shen, and M Vassalle
February 1994, The Journal of physiology,
J B Shen, and M Vassalle
January 1992, Experimental physiology,
J B Shen, and M Vassalle
June 1995, The American journal of physiology,
J B Shen, and M Vassalle
July 1988, The Journal of pharmacology and experimental therapeutics,
J B Shen, and M Vassalle
June 1987, European journal of pharmacology,
J B Shen, and M Vassalle
September 1991, Naunyn-Schmiedeberg's archives of pharmacology,
J B Shen, and M Vassalle
August 1991, The American journal of physiology,
Copied contents to your clipboard!