Theophylline increases oxygen consumption during inspiratory resistive loading. 1995

S Janssens, and E Derom, and J Vanhaecke, and M Decramer
Respiratory Muscle Research Unit, University of Leuven, Belgium.

The effect of theophylline on diaphragmatic blood flow (Qdi) and oxygen consumption (VO2di) was studied in eight lightly anesthetized dogs during quiet breathing and inspiratory resistive loading. Qdi was determined with the radioactive microsphere tracer technique, and VO2di was calculated as the product of Qdi and the diaphragmatic arterio-venous oxygen difference. During quiet breathing, theophylline increased minute ventilation (9.3 +/- 1.7 versus 5.1 +/- 0.4 L/min), mean inspiratory flow (547 +/- 60 versus 378 +/- 56 ml/s), and duty cycle (0.270 +/- 0.042 versus 0.192 +/- 0.024) but did not significantly alter Qdi or VO2di. Conversely, Qdi increased significantly during loaded breathing compared with quiet breathing (37 +/- 4 versus 27 +/- 3 ml/100 g/min) and was further increased by theophylline (45 +/- 7 ml/100 g/min). Theophylline did not alter the tension-time index of the diaphragm (TTdi) during inspiratory resistive loading (0.054 +/- 0.006 versus 0.056 +/- 0.004, p NS) but resulted in a disproportionate and significant increase in VO2di (2.66 +/- 0.53 versus 1.78 +/- 0.26 ml/100 g/min). Similarly, total-body oxygen consumption (VO2TB) during inspiratory loading increased significantly after theophylline (24%), but the tension-time index of the inspiratory muscles (TTi), a measure of the total respiratory load, was unchanged. We conclude that theophylline significantly increases VO2di and VO2TB at the same TTdi and TTi during resistive loading. This enhanced energy expenditure needs consideration in the clinical management of pulmonary disorders that increase the work of breathing.

UI MeSH Term Description Entries
D008171 Lung Diseases Pathological processes involving any part of the LUNG. Pulmonary Diseases,Disease, Pulmonary,Diseases, Pulmonary,Pulmonary Disease,Disease, Lung,Diseases, Lung,Lung Disease
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013806 Theophylline A methyl xanthine derivative from tea with diuretic, smooth muscle relaxant, bronchial dilation, cardiac and central nervous system stimulant activities. Theophylline inhibits the 3',5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE that degrades CYCLIC AMP thus potentiates the actions of agents that act through ADENYLYL CYCLASES and cyclic AMP. 1,3-Dimethylxanthine,3,7-Dihydro-1,3-dimethyl-1H-purine-2,6-dione,Accurbron,Aerobin,Aerolate,Afonilum Retard,Aquaphyllin,Armophylline,Bronchoparat,Bronkodyl,Constant-T,Elixophyllin,Euphylong,Glycine Theophyllinate,Lodrane,Monospan,Nuelin,Nuelin S.A.,Quibron T-SR,Slo-Phyllin,Somophyllin-T,Sustaire,Synophylate,Theo Von Ct,Theo-24,Theo-Dur,Theobid,Theocin,Theoconfin Continuous,Theodur,Theolair,Theolix,Theon,Theonite,Theopek,Theophylline Anhydrous,Theophylline Sodium Glycinate,Theospan,Theostat,Theovent,Uniphyl,Uniphyllin,Uniphylline,1,3 Dimethylxanthine,Anhydrous, Theophylline,Constant T,ConstantT,Ct, Theo Von,Glycinate, Theophylline Sodium,Quibron T SR,Quibron TSR,Slo Phyllin,SloPhyllin,Sodium Glycinate, Theophylline,Somophyllin T,SomophyllinT,Theo 24,Theo Dur,Theo24,Theophyllinate, Glycine,Von Ct, Theo
D014939 Work of Breathing RESPIRATORY MUSCLE contraction during INHALATION. The work is accomplished in three phases: LUNG COMPLIANCE work, that required to expand the LUNGS against its elastic forces; tissue resistance work, that required to overcome the viscosity of the lung and chest wall structures; and AIRWAY RESISTANCE work, that required to overcome airway resistance during the movement of air into the lungs. Work of breathing does not refer to expiration, which is entirely a passive process caused by elastic recoil of the lung and chest cage. (Guyton, Textbook of Medical Physiology, 8th ed, p406) Breathing Work,Breathing Works

Related Publications

S Janssens, and E Derom, and J Vanhaecke, and M Decramer
May 1991, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
May 1985, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
November 1996, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
July 1993, Clinical physiology (Oxford, England),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
April 1991, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
February 1992, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
August 1987, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
August 1992, Journal of applied physiology (Bethesda, Md. : 1985),
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
July 1991, The American review of respiratory disease,
S Janssens, and E Derom, and J Vanhaecke, and M Decramer
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!