Physical calibration of yeast artificial chromosome contig maps by RecA-assisted restriction endonuclease (RARE) cleavage. 1994

A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
Department of Molecular Biotechnology, University of Washington, Seattle 98195.

Clone-based genome maps can be constructed by determining the presence or absence of sequence-tagged sites (STSs) in a redundant collection of yeast artificial chromosome clones (YACs). While STS-content mapping has proven to be an effective means of ordering clone ends and STSs along chromosomes, the exact physical map positions of these landmarks are not determined. This fundamental weakness can be overcome by RecA-assisted restriction endonuclease (RARE) cleavage, a method that exploits the binding specificity on duplex DNA of a RecA-protein-oligodeoxynucleotide complex to enhance the cleavage specificity of a restriction endonuclease. This technique allows selective cleavage at individual members of a large set of restriction sites. RARE-cleavage mapping was applied to a contig comprising 5 overlapping YACs spanning 580 kb on human chromosome 14. An STS-content map comprising 10 YAC-end specific STSs and one internal STS was constructed. RARE cleavage was performed on 2 YACs that span the entire contig at the EcoRI sites defining the vector-insert junctions of all 5 YACs, as well as at a HhaI site within the STS that was initially used to screen the YAC library for the clones in the contig. The sizes of the RARE-cleavage fragments were measured by pulsed-field gel electrophoresis and used to convert the STS-content map into a true physical map that indicates precise positions of clone ends and STSs.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002883 Chromosomes, Human, Pair 14 A specific pair of GROUP D CHROMOSOMES of the human chromosome classification. Chromosome 14
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016324 Sequence Tagged Sites Short tracts of DNA sequence that are used as landmarks in GENOME mapping. In most instances, 200 to 500 base pairs of sequence define a Sequence Tagged Site (STS) that is operationally unique in the human genome (i.e., can be specifically detected by the polymerase chain reaction in the presence of all other genomic sequences). The overwhelming advantage of STSs over mapping landmarks defined in other ways is that the means of testing for the presence of a particular STS can be completely described as information in a database. Sequence-Tagged Sites,Sequence Tagged Site,Sequence-Tagged Site,Site, Sequence Tagged,Site, Sequence-Tagged,Sites, Sequence Tagged,Sites, Sequence-Tagged,Tagged Site, Sequence,Tagged Sites, Sequence

Related Publications

A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
September 1998, Proceedings of the National Academy of Sciences of the United States of America,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
December 1991, Science (New York, N.Y.),
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
January 1995, Genetic engineering,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
April 1994, Nature genetics,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
November 1974, Proceedings of the National Academy of Sciences of the United States of America,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
January 1977, Nucleic acids research,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
April 2001, Nucleic acids research,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
January 1980, Microbiology and immunology,
A Gnirke, and S P Iadonato, and P Y Kwok, and M V Olson
April 1997, Leukemia,
Copied contents to your clipboard!