Apoptosis and macrophage-mediated cell deletion in the regulation of B lymphopoiesis in mouse bone marrow. 1994

D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.

Studies of cell population dynamics and microenvironmental organization of B lymphopoiesis in the bone marrow of normal mice and in various genetically modified states have shown that cell loss, involving processes of apoptosis and macrophage-mediated cell deletion, is a prominent feature of the primary genesis of B lymphocytes. Balanced against the influence of proliferative stimulants, the programmed death of precursor B cells provides a quantitative control, determining the magnitude of the final output of functional B lymphocytes to the peripheral immune system. The cell loss mechanisms can be readily set in motion by external or systemic influences, making the B-cell output particularly vulnerable to suppression by ionizing irradiation, stress or other systemic mediators. In addition, however, cell loss exerts an important quality control in the formation of the primary B-cell repertoire. The combination of apoptosis and macrophage-mediated deletion, acting at successive stages of B-cell differentiation, efficiently eliminates many precursors having non-productive Ig gene rearrangements, cell cycle dysregulations, and certain autoreactive Ig specificities. Outstanding areas of further work abound. Important questions concern the nature of mechanisms which underlie the processes of B-cell apoptosis and macrophage deletion in bone marrow, the microenvironmental signals involved in B-cell life or death decisions and genetic factors which may override these B-cell culling mechanisms. The answers will be relevant to problems of autoimmune disease, humoral immunodeficiency and B-cell neoplasia.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017637 Clonal Deletion Removal, via CELL DEATH, of immature lymphocytes that interact with antigens during maturation. For T-lymphocytes this occurs in the thymus and ensures that mature T-lymphocytes are self tolerant. B-lymphocytes may also undergo clonal deletion. Clonal Abortion,Abortion, Clonal,Abortions, Clonal,Clonal Abortions,Clonal Deletions,Deletion, Clonal,Deletions, Clonal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
June 1997, Journal of immunology (Baltimore, Md. : 1950),
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
September 2000, European journal of immunology,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
June 2000, Immunological reviews,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
August 1999, European journal of immunology,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
May 2001, Experimental hematology,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
January 2004, Methods in molecular biology (Clifton, N.J.),
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
June 2011, PLoS pathogens,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
September 1994, The Journal of clinical investigation,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
March 2007, Experimental hematology,
D G Osmond, and S Rico-Vargas, and H Valenzona, and L Fauteux, and L Liu, and R Janani, and L Lu, and K Jacobsen
October 1994, Blood,
Copied contents to your clipboard!