Brain concentrations of biogenic amine metabolites in acutely treated and ethanol-dependent rats. 1976

F Karoum, and R J Wyatt, and E Majchrowicz

1 Mass fragmentography was used to measure whole brain concentrations of some of the major metabolites of tyramine, octopamine, dopamine and noradrenaline in acutely treated and in ethanol-dependent rats. 2 Treatments with ethanol, either acutely or chronically, failed to alter significantly brain concentration of p-hydroxphenylacetic and p-hydroxymandelic acid (metabolites derived from tyramine and octopamine respectively). The effect on catecholamine metabolites was marked and therefore suggests that ethanol is selective in its effect on central metabolism of biogenic amines. 3 Acute ethanol treatment significantly increased brain concentration of homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 3-methoxy-4-hydroxyphenylglycol (MHPG). Vanilmandelic acid (VMA) was not affected. All four metabolites (HVA, DOPAC, MHPG and VMA) were increased in the brains of rats rendered dependent on ethanol while still intoxicated (blood ethanol levels above 200 mg/dl). In ethanol-dependent rats undergoing ethanol withdrawal syndrome (no ethanol present in blood), the brain concentrations of HVA and DOPAC were normal while those of MHPG and VMA continued to be elevated. 4 From the decline in the concentrations of HVA and DOPAC after 50 mg pargyline/kg in control rats and rats acutely treated with ethanol, it was concluded that ethanol has no effect on the transport of phenolic acids across the blood brain barrier. 5 No reversal in the metabolism of catecholamines from an oxidative to a reductive pathway, analogous to that produced by ethanol in the periphery, could be established in the brain. 6 The increase in catecholamine metabolite concentrations after ethanol treatment, either acute or chronic, were interpreted as manifestations of increases catecholamine turnover.

UI MeSH Term Description Entries
D008297 Male Males
D008333 Mandelic Acids Analogs or derivatives of mandelic acid (alpha-hydroxybenzeneacetic acid). Acids, Mandelic
D008734 Methoxyhydroxyphenylglycol Synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Hydroxymethoxyphenylglycol,MHPG,MOPEG,Vanylglycol,4-Hydroxy-3-methoxyphenylethylene Glycol,4-Hydroxy-3-methoxyphenylethyleneglycol,4-Hydroxy-3-methoxyphenylglycol,Methoxyhydroxyphenylglycol, (+)-Isomer,Methoxyhydroxyphenylglycol, (+-)-Isomer,Methoxyhydroxyphenylglycol, (-)-Isomer,4 Hydroxy 3 methoxyphenylethylene Glycol,4 Hydroxy 3 methoxyphenylethyleneglycol,4 Hydroxy 3 methoxyphenylglycol
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009655 Octopamine An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates. Norsynephrine,p-Octopamine,para-Octopamine,4-Octopamine,Norsympatol,alpha-(Aminoethyl)-4-hydroxybenzenemethanol
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol

Related Publications

F Karoum, and R J Wyatt, and E Majchrowicz
July 1987, Drug and alcohol dependence,
F Karoum, and R J Wyatt, and E Majchrowicz
January 1988, General pharmacology,
F Karoum, and R J Wyatt, and E Majchrowicz
June 1976, Brain research,
F Karoum, and R J Wyatt, and E Majchrowicz
April 1984, Physiology & behavior,
F Karoum, and R J Wyatt, and E Majchrowicz
June 1974, Journal of neurochemistry,
F Karoum, and R J Wyatt, and E Majchrowicz
August 1974, Journal of comparative and physiological psychology,
F Karoum, and R J Wyatt, and E Majchrowicz
March 1980, Journal of studies on alcohol,
F Karoum, and R J Wyatt, and E Majchrowicz
April 1985, Research communications in chemical pathology and pharmacology,
F Karoum, and R J Wyatt, and E Majchrowicz
January 1990, The Chinese journal of physiology,
F Karoum, and R J Wyatt, and E Majchrowicz
September 1975, Federation proceedings,
Copied contents to your clipboard!