Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. 1995

C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.

Antigen priming of naive CD4 T cells can generate effector CD4 T cells that produce interleukin 4 (T helper [Th]2-like) or interferon-gamma (Th1-like). Using a system in which priming leads to responses dominated by one or the other of these cell types, we show that varying either the antigenic peptide or the major histocompatibility complex class II molecule can determine whether Th1-like or Th2-like responses are obtained. Our results show that peptide/major histocompatibility complex class II complexes that interact strongly with the T cell receptor favor generation of Th1-like cells, while those that bind weakly favor priming of Th2-like T cells. Thus, signals from the T cell receptor can influence the differentiation of CD4 T cells into specific types of effector cells.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
April 1996, The Journal of experimental medicine,
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
July 1988, Biochimie,
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
April 1998, Journal of immunology (Baltimore, Md. : 1950),
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
January 2010, Journal of immunology (Baltimore, Md. : 1950),
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
June 1988, Journal of immunology (Baltimore, Md. : 1950),
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
April 2005, Microbes and infection,
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
January 1997, Molecular immunology,
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
January 2006, Modern rheumatology,
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
January 2001, Stem cells (Dayton, Ohio),
C Pfeiffer, and J Stein, and S Southwood, and H Ketelaar, and A Sette, and K Bottomly
January 2001, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!