Scanning electron microscopy of surface features of hamster embryo cells transformed in vitro by X-irradiation. 1976

C Borek, and C M Fenoglio

Scanning electron microscope studies were carried out on Syrian hamster embryo cells transformed in vitro by X-irradiation (300 rads) (X-ray transformed) and on normal nonirradiated and irradiated nontransformed controls. Transformed cells appeared in scanning electron microscopy as pleomorphic, thick cells piling up over each other and exhibiting extensive surface features consisting of microvilli, blebs, and ruffles. These surface structures were seen on single as well as on densely cultured transformed cells during both interphase and mitosis. The complex surface was observed shortly after transformation (on cells of a 20-day-old clone) and seems a permanent feature of the X-ray-transformed cells (present after 8 years in culture). All controls appeared by scanning electron microscopy as regular, flat, and smooth cells which grew in high-density cultures to seemingly contact-inhibited monolayers. During mitosis the normal cells (control, nontransformed) displayed surface excrescences similar to those of the transformed cells making the mitotic normal cells indistinguishable from transformed cells. The complex surface features in the normal cells were temporary and reversed back to characteristic smoothness upon reentrance into interphase.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D011830 Radiation Effects The effects of ionizing and nonionizing radiation upon living organisms, organs and tissues, and their constituents, and upon physiologic processes. It includes the effect of irradiation on food, drugs, and chemicals. Effects, Radiation,Effect, Radiation,Radiation Effect
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D003260 Contact Inhibition Arrest of cell locomotion or cell division when two cells come into contact. Inhibition, Contact,Contact Inhibitions,Inhibitions, Contact

Related Publications

C Borek, and C M Fenoglio
March 1976, The Journal of cell biology,
C Borek, and C M Fenoglio
January 1979, Journal of supramolecular structure,
C Borek, and C M Fenoglio
December 1978, Israel journal of medical sciences,
C Borek, and C M Fenoglio
January 1983, Voprosy virusologii,
C Borek, and C M Fenoglio
January 1986, Scanning electron microscopy,
C Borek, and C M Fenoglio
October 1996, Journal of submicroscopic cytology and pathology,
C Borek, and C M Fenoglio
March 1977, Scandinavian journal of haematology,
Copied contents to your clipboard!