The Na+,K(+)-pump and muscle contractility. 1994

T Clausen, and O B Nielsen
Institute of Physiology, University of Aarhus, Denmark.

In skeletal muscle, the excitation induced influx of Na+ and efflux of K+ may be sufficient to exceed the activity or even the capacity of the available Na+,K(+)-pumps. This leads to a rise in intracellular Na+ and extracellular K+. Both events interfere with excitability and may present important limitations for the continuation of contractile activity. Furthermore, inhibition of the Na+,K(+)-pump or reduction of the concentration of functional Na+,K(+)-pumps decrease excitability and the maintenance of force during continued stimulation. Conversely, in muscles where contractile force is inhibited by exposure to high extracellular K+, acute stimulation of the Na+,K(+)-pump with catecholamines, CGRP or insulin leads to a rapid recovery of force. The large passive fluxes of Na+ and K+ associated with excitation constitute the major drive on the activity of the Na+,K(+)-pump, giving rise to up to 20-fold stimulation of the transport rate. In keeping with this, training induces an upregulation of the total concentration of Na+,K(+)-pumps in skeletal muscle. The activity and the capacity of the Na+,K(+)-pump are important limiting factors determining the maintenance of excitability and contractile performance.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T Clausen, and O B Nielsen
October 2003, Physiological reviews,
T Clausen, and O B Nielsen
December 2005, Annals of the New York Academy of Sciences,
T Clausen, and O B Nielsen
December 1993, The Journal of physiology,
T Clausen, and O B Nielsen
January 1989, Methods in enzymology,
T Clausen, and O B Nielsen
January 2008, Journal of applied physiology (Bethesda, Md. : 1985),
T Clausen, and O B Nielsen
January 1989, Kidney international,
T Clausen, and O B Nielsen
January 1988, Methods in enzymology,
T Clausen, and O B Nielsen
January 1988, The Journal of membrane biology,
T Clausen, and O B Nielsen
October 1982, The American journal of physiology,
T Clausen, and O B Nielsen
December 1972, The Journal of clinical investigation,
Copied contents to your clipboard!