Transforming growth factor-beta protects human neurons against beta-amyloid-induced injury. 1994

C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
Neuroimmunobiology and Host Defense Laboratory, Minneapolis Medical Research Foundation, MN 55404.

Deposition of amyloid fibrils in the brain is a histopathologic hallmark of Alzheimer disease (AD) and beta-amyloid protein (A beta), the principal component of amyloid fibrils, has been implicated in the neuropathogenesis of AD. In the present study, we first developed an in vitro model of A beta-induced neurodegeneration using human fetal brain-cell cultures and then tested the hypothesis that cytokines modulate A beta-induced neurodegeneration. When brain-cell cultures were exposed to A beta, marked neuronal loss (60% of neurons by microscopic assessment) and functional impairment (i.e., reduction in uptake of [3H]gamma-aminobutyric acid) were observed after 6 d of incubation. A beta-induced neurodegeneration was dose-dependent with maximal effect at 100 microM. Although interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-alpha had a nominal effect, both the beta 1 and beta 2 isoforms of transforming growth factor-beta dose-dependently protected > 50% of neurons against A beta-induced injury. IL-4 also proved to be neuro-protective. A beta-induced neurodegeneration was accompanied by microglial cell proliferation and enhanced release of IL-1, IL-6, and TNF-alpha. These findings are consistent with the emerging concept that AD is an inflammatory disease and may lead to new therapeutic strategies aimed at reducing A beta-induced neurotoxicity.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D016229 Amyloid beta-Peptides Peptides generated from AMYLOID BETA-PEPTIDES PRECURSOR. An amyloid fibrillar form of these peptides is the major component of amyloid plaques found in individuals with Alzheimer's disease and in aged individuals with trisomy 21 (DOWN SYNDROME). The peptide is found predominantly in the nervous system, but there have been reports of its presence in non-neural tissue. Alzheimer beta-Protein,Amyloid Protein A4,Amyloid beta-Peptide,Amyloid beta-Protein,beta Amyloid,beta-Amyloid Protein,Alzheimer's ABP,Alzheimer's Amyloid Fibril Protein,Amyloid AD-AP,Amyloid Fibril Protein, Alzheimer's,Amyloid beta-Proteins,ABP, Alzheimer's,AD-AP, Amyloid,Alzheimer ABP,Alzheimer beta Protein,Alzheimers ABP,Amyloid AD AP,Amyloid beta Peptide,Amyloid beta Peptides,Amyloid beta Protein,Amyloid beta Proteins,Amyloid, beta,Protein A4, Amyloid,Protein, beta-Amyloid,beta Amyloid Protein,beta-Peptide, Amyloid,beta-Peptides, Amyloid,beta-Protein, Alzheimer,beta-Protein, Amyloid,beta-Proteins, Amyloid

Related Publications

C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
April 1997, Proceedings of the National Academy of Sciences of the United States of America,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
May 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
January 1997, The Journal of experimental medicine,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
July 2008, International journal of radiation oncology, biology, physics,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
June 1999, FEBS letters,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
December 2014, American journal of respiratory cell and molecular biology,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
August 2009, Brain research,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
October 2008, Cell biology international,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
December 2008, Neurobiology of aging,
C C Chao, and S Hu, and F H Kravitz, and M Tsang, and W R Anderson, and P K Peterson
July 1997, Current opinion in nephrology and hypertension,
Copied contents to your clipboard!