Crystal structure of spinach chloroplast fructose-1,6-bisphosphatase at 2.8 A resolution. 1995

V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
Gibbs Chemical Laboratory, Harvard University, Cambridge, Massachusetts 02138, USA.

The three-dimensional structure of the spinach chloroplast fructose-1,6-bisphosphatase (Fru-1,6-Pase) has been solved by the molecular replacement method at 2.8 A resolution and refined to a crystallographic R factor of 0.203. The enzyme is composed of four monomers and displays pseudo D2 symmetry. Comparison with the allosteric Fru-1,6-Pase from pig kidney shows orientationally displaced dimers within the quaternary structure of the chloroplast enzyme. When the C1C2 dimers of the two enzymes are superimposed, the C3C4 dimer of the chloroplast enzyme is rotated 20 degrees and 5 degrees relative to the C3C4 dimer of the R and T forms of the pig kidney enzyme, respectively. This new quaternary structure, designated as S, may be described as a super-T form and is outside of the pathway of the allosteric transition which occurs in the pig kidney enzyme, which shows a 15 degrees rotation between T and R forms. Chloroplast Fru-1,6-Pase, unlike the pig kidney enzyme, is insensitive to allosteric transformation by AMP. Structural changes in the AMP binding site involving mainly helices H1, H2, and H3 and the loop between H1 and H2 at the dimer interface interfere with binding of the phosphate of AMP. Finally, the location of cysteines residues provides a basis for a preliminary discussion of the activation of the enzyme by reduction of cysteines via the ferredoxin-thioredoxin f system; this process is complementary to activation by pH changes, Mg2+ or Ca2+, Fru-1,6-P2, and possibly Fru-2,6-P2.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000495 Allosteric Site A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties. Allosteric Sites,Site, Allosteric,Sites, Allosteric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
April 1990, Journal of molecular biology,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
May 1990, Archives of biochemistry and biophysics,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
June 1988, Archivos de biologia y medicina experimentales,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
March 1997, Biochimica et biophysica acta,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
July 1984, Plant physiology,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
January 2002, Photosynthesis research,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
November 1976, European journal of biochemistry,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
January 1999, Acta crystallographica. Section D, Biological crystallography,
V Villeret, and S Huang, and Y Zhang, and Y Xue, and W N Lipscomb
May 1997, FEBS letters,
Copied contents to your clipboard!