Modeling of long-range electrostatic interactions in DNA. 1995

A Vologodskii, and N Cozzarelli
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

We used a Monte Carlo approach to compute the statistical properties of closed DNA chains with different descriptions of the electrostatic interactions. We compared these computed results with experimentally measured knotting probabilities, which are very sensitive to intersegment interactions. The calculated results based on the Debye-Hückel approximation of the solution of the Poisson-Boltzmann equation agreed very well with the published experimental data, while potential based on counterion condensation theory was clearly less satisfactory. We then compared the simpler hard-core approximation of electrostatic interactions to the Debye-Hückel potential. The hard-core approximation, specified in terms of a DNA effective diameter, gives the same conformational properties of random coils as the Debye-Hückel approximation. We found clear but relatively small differences between the two potentials for the conformational properties of supercoiled DNA.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D016012 Poisson Distribution A distribution function used to describe the occurrence of rare events or to describe the sampling distribution of isolated counts in a continuum of time or space. Distribution, Poisson

Related Publications

A Vologodskii, and N Cozzarelli
September 2000, Biophysical journal,
A Vologodskii, and N Cozzarelli
July 2021, Angewandte Chemie (International ed. in English),
A Vologodskii, and N Cozzarelli
March 2022, The Journal of chemical physics,
A Vologodskii, and N Cozzarelli
November 2021, Biophysical journal,
A Vologodskii, and N Cozzarelli
August 1970, Experimental cell research,
A Vologodskii, and N Cozzarelli
July 2002, Chembiochem : a European journal of chemical biology,
A Vologodskii, and N Cozzarelli
October 2005, Journal of biomolecular structure & dynamics,
A Vologodskii, and N Cozzarelli
September 1994, Journal of molecular recognition : JMR,
A Vologodskii, and N Cozzarelli
February 2005, Physical review. E, Statistical, nonlinear, and soft matter physics,
Copied contents to your clipboard!